Embedded Systems

Week 3: System Design with Sensors I Baremetal

Dr. Vecdi Emre Levent

Instructors

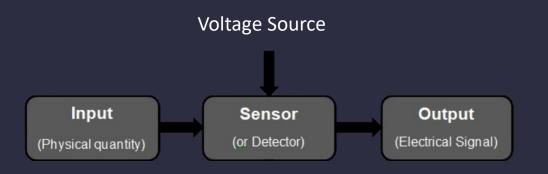
Assist. Prof. Dr. Vecdi Emre Levent Email : <u>emre@levent.tc</u> <u>emre.levent@marmara.edu.tr</u> Web: www.levent.tc

I883

System Design with Sensors I - Baremetal

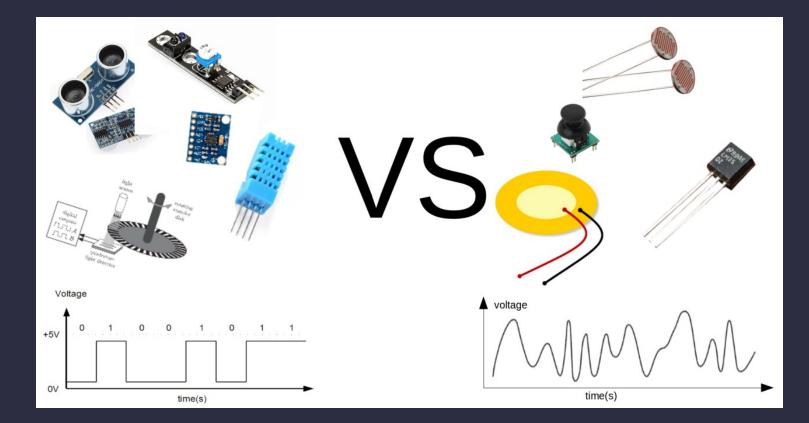
How to Build an Embedded System?

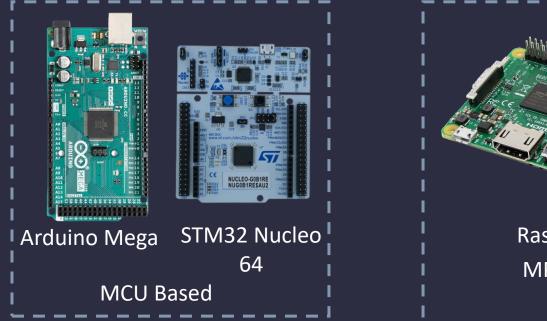
- LEDs Buttons • ۰ Motors Sensors • • **Communication Interfaces** • Temperature • Outputs Inputs • IMU UART Controller • GPS • SPI Hardware • I2C • ... **Communication Interfaces** Ethernet • • • UART ••• • • SPI **RF** Transceiver • • I2C • Ethernet
 - ... RF Transceiver

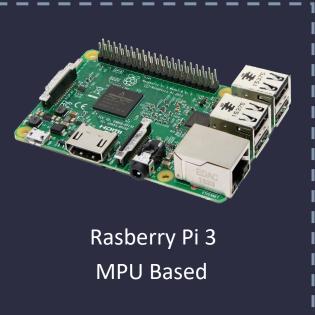

•

Sensors

Sensor

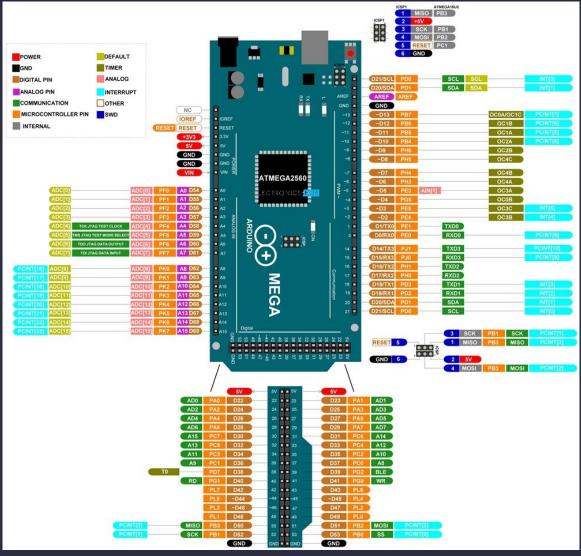

- Device for Detection: A sensor is a device designed to detect changes in physical, chemical, or biological environments.
- Signal Conversion: It converts these changes into electrical signals that can be measured and processed.
- Real-World Interface: Serves as the bridge between the physical world and embedded systems.
- Core Functionality: Enables systems to monitor, control, and respond to environmental variations.



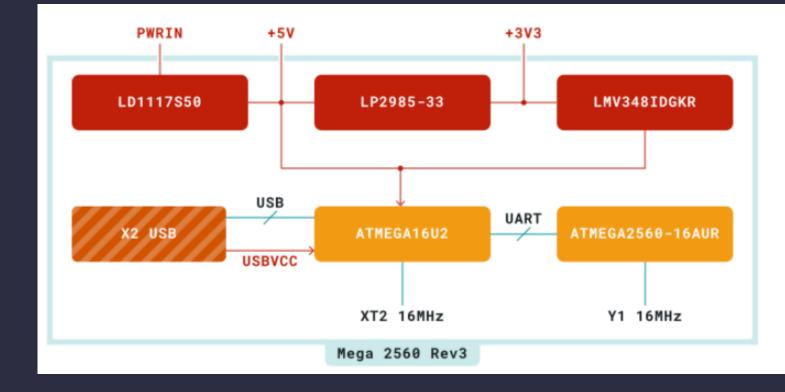

Sensors

- Sensor Output Types
 - Analog Sensors
 - Digital Sensors
- Sensors Types
 - Temperature
 - Pressure
 - Light
 - Motion
 - Gas
 - GPS
 - Etc...

• MCU & MPU Development Boards


- MCU & MPU Development Boards
 - Arduino Mega 2560 Development Board + Extension Card
 - The board accommodates
 - The ATmega2560 microcontroller, which operates at a frequency of 16 MHz. 54 digital input/output pins,
 - 16 analog inputs,
 - 4 UARTs
 - A USB connection,
 - A power jack
 - An ICSP header
 - A reset button.
 - For Details:

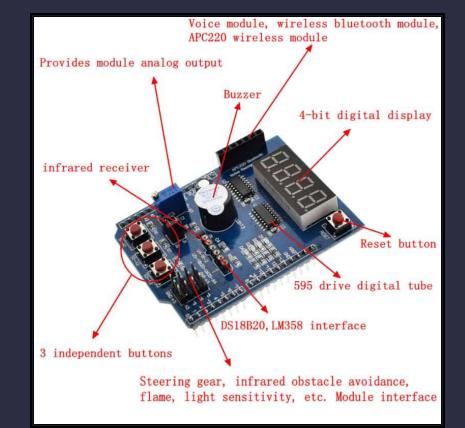
https://docs.arduino.cc/resources/datasheets/A000067-datasheet.pdf


- MCU & MPU Development Boards
 - Arduino Mega 2560 Development Board + Extension Card
 - Board Pinout Diagram

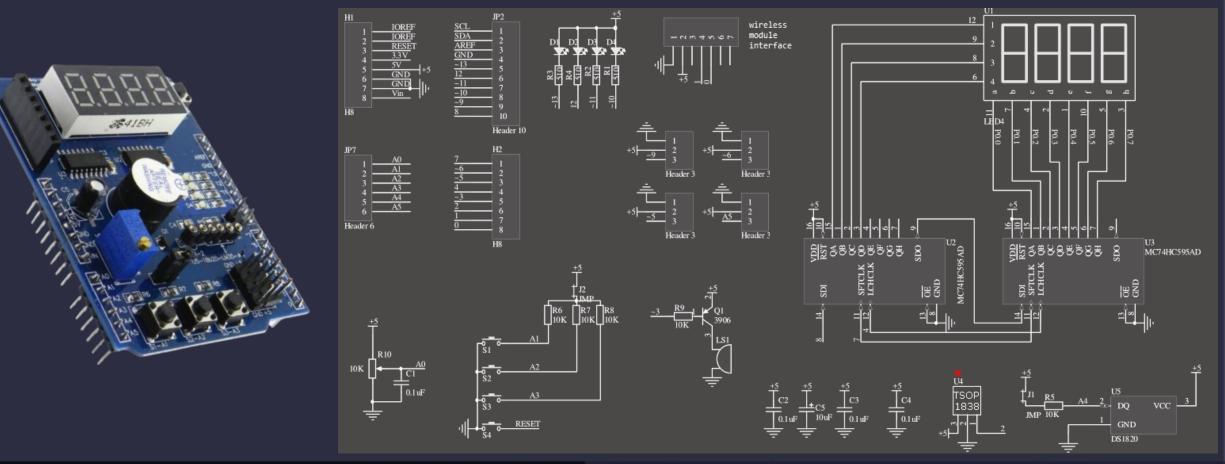
I 883

System Design with Sensors I - Baremetal

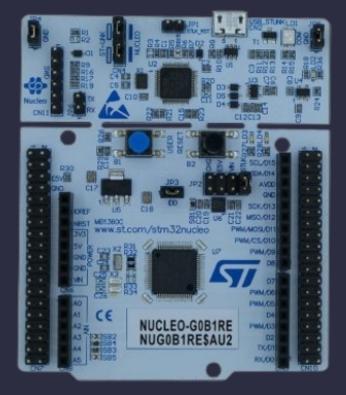
- MCU & MPU Development Boards
 - Arduino Mega 2560 Development Board + Extension Card
 - Board Block Diagram



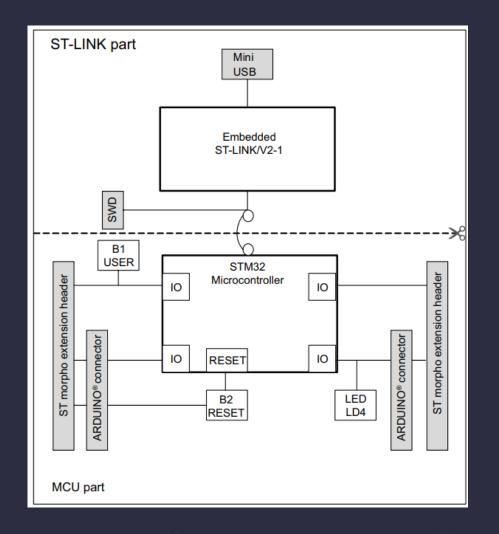
- MCU & MPU Development Boards
 - Arduino Mega 2560 Development Board + Extension Card



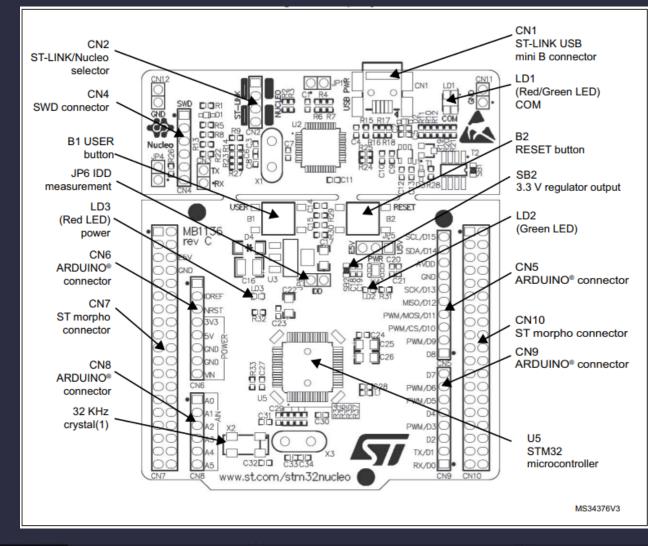
• MCU & MPU Development Boards


• Arduino Mega 2560 Development Board + Extension Card

- MCU & MPU Development Boards
 - STM32 Nucleo Development Board
 - STM32 microcontroller in LQFP64 package
 - Three LEDs:
 - USB communication (LD1), user LED (LD2), power LED (LD3)
 - Two push-buttons: USER and RESET
 - Two types of extension resources
 - ARDUINO[®] Uno V3 connectivity
 - ST morpho extension pin headers for full access to all STM32 I/Os
 - Three different interfaces supported on USB:
 - Virtual COM port
 - Mass storage
 - Debug port
 - For details:


https://www.st.com/resource/en/user_manual/um1724-stm32nucleo64-boards-mb1136-stmicroelectronics.pdf

- MCU & MPU Development Boards
 - STM32 Nucleo Development Board


• STM32 Nucleo Board Block Diagram

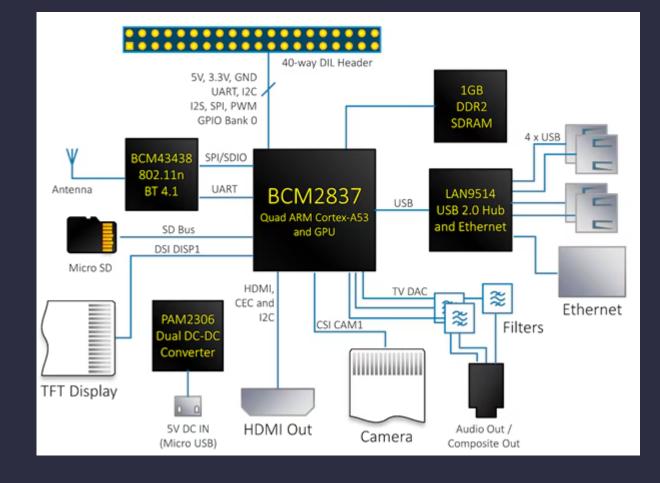
- MCU & MPU Development Boards
 - STM32 Nucleo Development Board

• STM32 Nucleo Board Block Diagram

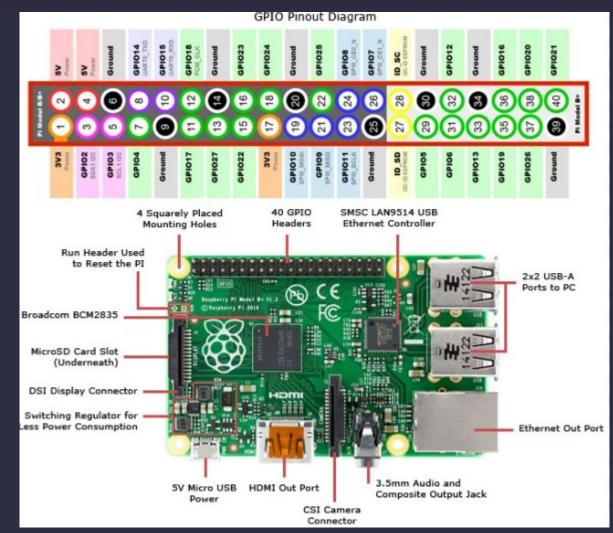
MCU & MPU Architectures, Interfaces

• MCU & MPU Development Boards

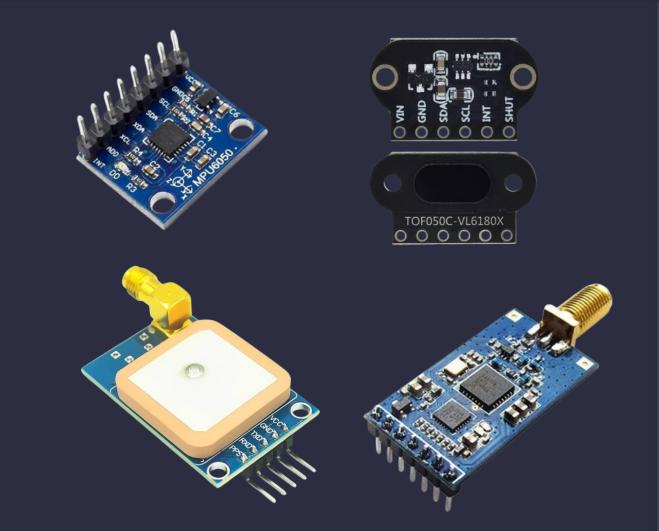
• MPU, STM32 Nucleo with Extension Board


- MCU & MPU Development Boards
 - Rasberry PI 3 Development Board
 - Raspberry Pi 3 Model B+ has a 64-bit quad-core processor running at 1.4GHz
 - Dual-band 2.4GHz and 5GHz wireless LAN
 - Bluetooth 4.2/BLE
 - Gigabit Ethernet
 - USB 2.0
 - 1 x full size HDMI
 - MIPI DSI display port
 - MIPI CSI camera port
 - Details:

<u>https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plusproduct-brief.pdf</u>



- MCU & MPU Development Boards
 - Rasberry PI 3 Development Board
 - Block Diagram

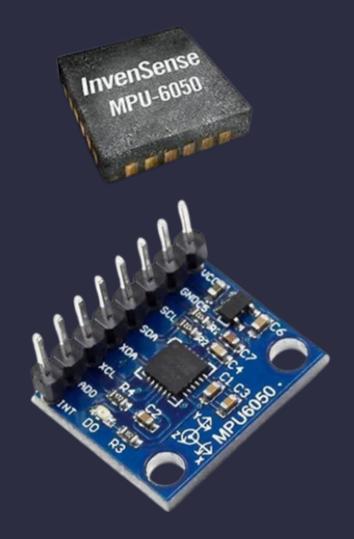


- MCU & MPU Development Boards
 - Rasberry PI 3 Development Board
 - Block Diagram

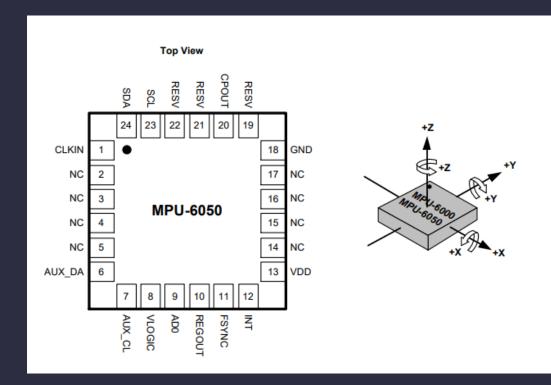
- Sensor Development Boards
 - Sensors
 - Use Case Hardwares
 - Gyroscope, MPU6050
 - Laser Distance Measurement, TOF050C
 - GPS, NEO-7M
 - RF Transceiver, Dorji DRF1278DM

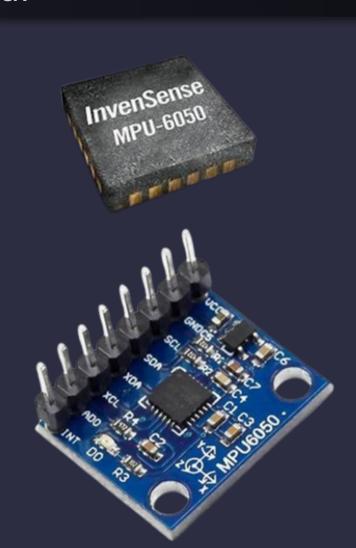
ÜN'n

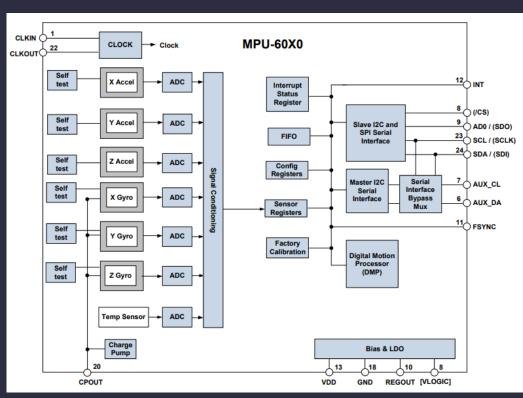
1883



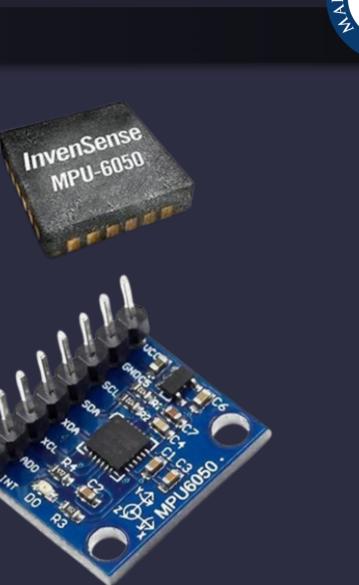
- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050
 - Voltage: 3-5V
 - Gyro Maximum Degree Measurement: +- 250, 500, 1000, 2000 ° / s
 - Accelerometer: ± 2 ± 4 ± 8 ± 16 g
 - Communication: Standart I²C
 - I2C Address: 0x68
 - Up to 400KHz I2C Speed
 - Details


https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf


https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf


- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 I/Os

- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Diagram



- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Diagram

Interrupt Sources

- FIFO Overflow FIFO
- Data Ready Sensor Registers
- I2C Master errors: Lost Arbitration, NACKs I 2C Master

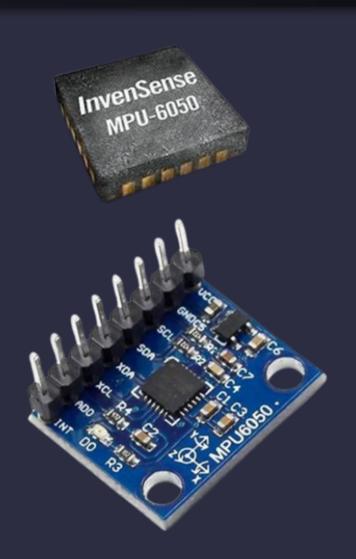
- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Diagram
 - Typical Register Read

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Ρ
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

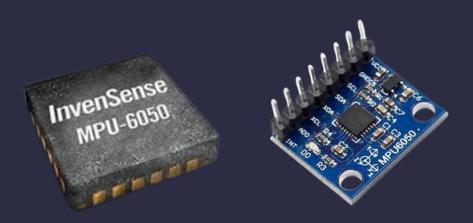
Master	S	AD+W		RA		S	AD+R			ACK		NACK	Ρ
Slave			ACK		ACK			ACK	DATA		DATA		

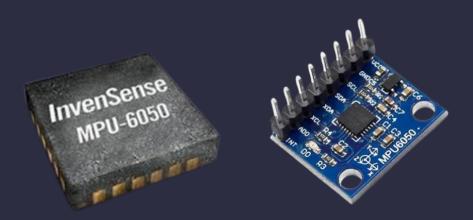


- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Diagram
 - Typical Register Write

Master	S	AD+W		RA		DATA		Ρ
Slave			ACK		ACK		ACK	

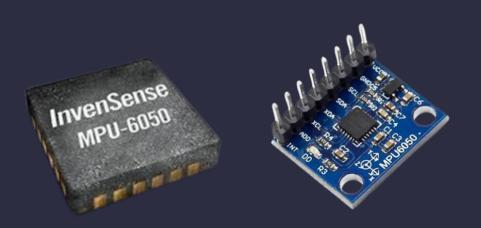
Burst Write Sequence


Master	S	AD+W		RA		DATA		DATA		Ρ
Slave			ACK		ACK		ACK		ACK	


- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Register Space

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0D	13	SELF_TEST_X	R/W		XA_TEST[4-2]			XG_TEST[4-0]					
0E	14	SELF_TEST_Y	R/W		YA_TEST[4-2]		YG_TEST[4-0]						
0F	15	SELF_TEST_Z	R/W		ZA_TEST[4-2]		ZG_TEST[4-0]						
10	16	SELF_TEST_A	R/W	RESE	RESERVED XA_TEST[1-0] YA_TEST[1-0]						ZA_TEST[1-0]		
19	25	SMPLRT_DIV	R/W				SMPLRT	_DIV[7:0]					
1 A	26	CONFIG	R/W			E	T_SYNC_SET[2	:0]		DLPF_CFG[2:0]			
1B	27	GYRO_CONFIG	R/W	-	1.1	1.1	FS_SE	EL [1:0]	-				
1C	28	ACCEL_CONFIG	R/W	XA_ST	YA_ST	ZA_ST	AFS_S	EL[1:0]					
23	35	FIFO_EN	R/W	TEMP _FIFO_EN	XG _FIFO_EN	YG _FIFO_EN	ZG _FIFO_EN	ACCEL _FIFO_EN	SLV2 _FIFO_EN	SLV1 _FIFO_EN	SLV0 _FIFO_EN		
24	36	I2C_MST_CTRL	R/W	MULT _MST_EN	WAIT _FOR_ES	SLV_3 _FIFO_EN	I2C_MST _P_NSR		I2C_MST	_CLK[3:0]			
25	37	I2C_SLV0_ADDR	R/W	I2C_SLV0 _RW			120	C_SLV0_ADDR(6	3:0]				
26	38	I2C_SLV0_REG	R/W				I2C_SLV0	_REG[7:0]					
27	39	I2C_SLV0_CTRL	R/W	I2C_SLV0 _EN	I2C_SLV0 _BYTE_SW	I2C_SLV0 _REG_DIS	I2C_SLV0 _GRP		I2C_SLV0	_LEN[3:0]			
28	40	I2C_SLV1_ADDR	R/W	I2C_SLV1 _RW			120	C_SLV1_ADDR(6	8:0]				
29	41	I2C_SLV1_REG	R/W		12C_SLV1_REG[7:0]								
2A	42	I2C_SLV1_CTRL	R/W	I2C_SLV1 _EN	I2C_SLV1 _BYTE_SW	I2C_SLV1 _REG_DIS	I2C_SLV1 _GRP						
2B	43	I2C_SLV2_ADDR	R/W	I2C_SLV2 _RW			120	C_SLV2_ADDR(6	3:0]				
2C	44	I2C_SLV2_REG	R/W				I2C_SLV2	_REG[7:0]					
2D	45	I2C_SLV2_CTRL	R/W	I2C_SLV2 _EN	I2C_SLV2 _BYTE_SW	I2C_SLV2 _REG_DIS	I2C_SLV2 _GRP		I2C_SLV2	_LEN[3:0]			
2E	46	I2C_SLV3_ADDR	R/W	I2C_SLV3 _RW			120	C_SLV3_ADDR(6	3:0]				
2F	47	I2C_SLV3_REG	R/W				I2C_SLV3	_REG[7:0]					
30	48	I2C_SLV3_CTRL	R/W	I2C_SLV3 _EN	I2C_SLV3 _BYTE_SW	I2C_SLV3 _REG_DIS	I2C_SLV3 _GRP		I2C_SLV3	LEN[3:0]			
31	49	I2C_SLV4_ADDR	R/W	I2C_SLV4 _RW			120	C_SLV4_ADDR(6	3:0]				
32	50	I2C_SLV4_REG	R/W				I2C_SLV4	_REG[7:0]					
33	51	I2C_SLV4_DO	R/W				I2C_SLV	4_DO[7:0]					
34	52	I2C_SLV4_CTRL	R/W	I2C_SLV4 _EN	I2C_SLV4 _INT_EN	I2C_SLV4 _REG_DIS		Ľ	2C_MST_DLY[4:	0]			
35	53	I2C_SLV4_DI	R				I2C_SLV	4_DI[7:0]					
36	54	I2C_MST_STATUS	R	PASS_ THROUGH	I2C_SLV4 _DONE	I2C_LOST _ARB	I2C_SLV4 _NACK	I2C_SLV3 _NACK	I2C_SLV2 _NACK	I2C_SLV1 _NACK	I2C_SLV0 _NACK		
37	55	INT_PIN_CFG	R/W	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_ INT_LEVEL	FSYNC _INT_EN	_BYPASS _EN			
38	56	INT_ENABLE	R/W	-	-	-	FIFO _OFLOW _EN	I2C_MST _INT_EN	-	-	DATA _RDY_EN		
3A	58	INT_STATUS	R	-			FIFO _OFLOW _INT	I2C_MST _INT			DATA _RDY_INT		

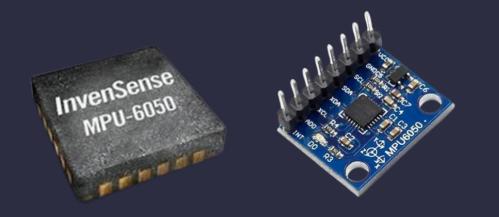
- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Register Space


Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
3B	59	ACCEL_XOUT_H	R				ACCEL_X	OUT[15:8]				
3C	60	ACCEL_XOUT_L	R		ACCEL_XOUT[7:0]							
3D	61	ACCEL_YOUT_H	R				ACCEL_Y	OUT[15:8]				
3E	62	ACCEL_YOUT_L	R				ACCEL_Y	OUT[7:0]				
3F	63	ACCEL_ZOUT_H	R				ACCEL_Z	OUT[15:8]				
40	64	ACCEL_ZOUT_L	R				ACCEL_Z	OUT[7:0]				
41	65	TEMP_OUT_H	R				TEMP_O	UT[15:8]				
42	66	TEMP_OUT_L	R				TEMP_C	OUT[7:0]				
43	67	GYRO_XOUT_H	R				GYRO_X	OUT[15:8]				
44	68	GYRO_XOUT_L	R				GYRO_X	OUT[7:0]				
45	69	GYRO_YOUT_H	R				GYRO_Y	OUT[15:8]				
46	70	GYRO_YOUT_L	R				GYRO_Y	OUT[7:0]				
47	71	GYRO_ZOUT_H	R				GYRO_Z	OUT[15:8]				
48	72	GYRO_ZOUT_L	R				GYRO_Z	OUT[7:0]				
49	73	EXT_SENS_DATA_00	R				EXT_SENS_0	DATA_00[7:0]				
4A	74	EXT_SENS_DATA_01	R				EXT_SENS_D	DATA_01[7:0]				
4B	75	EXT_SENS_DATA_02	R				EXT_SENS_D	DATA_02[7:0]				
4C	76	EXT_SENS_DATA_03	R		EXT_SENS_DATA_03(7:0)							
4D	77	EXT_SENS_DATA_04	R				EXT_SENS_D	DATA_04[7:0]				
4E	78	EXT_SENS_DATA_05	R				EXT_SENS_D	DATA_05[7:0]				
4F	79	EXT_SENS_DATA_06	R				EXT_SENS_D	DATA_06[7:0]				
50	80	EXT_SENS_DATA_07	R				EXT_SENS_D	DATA_07[7:0]				
51	81	EXT_SENS_DATA_08	R				EXT_SENS_[DATA_08[7:0]				
52	82	EXT_SENS_DATA_09	R				EXT_SENS_D	DATA_09[7:0]				
53	83	EXT_SENS_DATA_10	R				EXT_SENS_D	DATA_10[7:0]				
54	84	EXT_SENS_DATA_11	R				EXT_SENS_[DATA_11[7:0]				
55	85	EXT_SENS_DATA_12	R				EXT_SENS_D	DATA_12[7:0]				
56	86	EXT_SENS_DATA_13	R				EXT_SENS_D	DATA_13[7:0]				
57	87	EXT_SENS_DATA_14	R				EXT_SENS_E	DATA_14[7:0]				
58	88	EXT_SENS_DATA_15	R				EXT_SENS_0	DATA_15[7:0]				
59	89	EXT_SENS_DATA_16	R				EXT_SENS_0	DATA_16[7:0]				
5A	90	EXT_SENS_DATA_17	R				EXT_SENS_E	DATA_17[7:0]				
5B	91	EXT_SENS_DATA_18	R				EXT_SENS_0	DATA_18[7:0]				
5C	92	EXT_SENS_DATA_19	R		EXT_SENS_DATA_19[7:0]							
5D	93	EXT_SENS_DATA_20	R	EXT_SENS_DATA_20[7:0]								
5E	94	EXT_SENS_DATA_21	R	EXT_SENS_DATA_21[7:0]								
5F	95	EXT_SENS_DATA_22	R				EXT_SENS_D	DATA_22[7:0]				
60	96	EXT_SENS_DATA_23	R				EXT_SENS_D	DATA_23[7:0]				
63	99	I2C_SLV0_DO	R/W	12C_SLV0_D0[7:0]								
64	100	I2C_SLV1_DO	R/W	12C_SLV1_D0[7:0]								
65	101	I2C_SLV2_DO	R/W	12C_SLV2_DO[7:0]								
66	102	I2C_SLV3_DO	R/W				I2C_SLV3	3_DO[7:0]				

Dr. V. E. Levent

nt Embedded Systems

- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Register Space

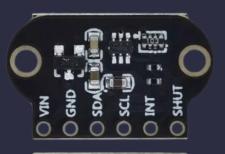


Ad (He		Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
67		103	I2C_MST_DELAY_CT RL	R/W	DELAY_ES _SHADOW			I2C_SLV4 _DLY_EN	I2C_SLV3 _DLY_EN	I2C_SLV2 _DLY_EN	I2C_SLV1 _DLY_EN	I2C_SLV0 _DLY_EN
68		104	SIGNAL_PATH_RES	R/W						GYRO _RESET	ACCEL _RESET	TEMP _RESET
6A		106	USER_CTRL	R/W		FIFO_EN	I2C_MST _EN	I2C_IF _DIS		FIFO _RESET	I2C_MST _RESET	SIG_COND _RESET
6B	1	107	PWR_MGMT_1	R/W	DEVICE _RESET	SLEEP	CYCLE		TEMP_DIS	CLKSEL[2:0]		
6C	;	108	PWR_MGMT_2	R/W	LP_WAKE	_CTRL[1:0]	STBY_XA	STBY_YA	STBY_ZA	STBY_XG	STBY_YG	STBY_ZG
72		114	FIFO_COUNTH	RW				FIFO_CO	UNT[15:8]			
73		115	FIFO_COUNTL	RW				FIFO_CC	UNT[7:0]			
74		116	FIFO_R_W	R/W		FIFO_DATA[7:0]						
75		117	WHO_AM_I	R	-	-		WHO_AM_I[6:1]				-

I883

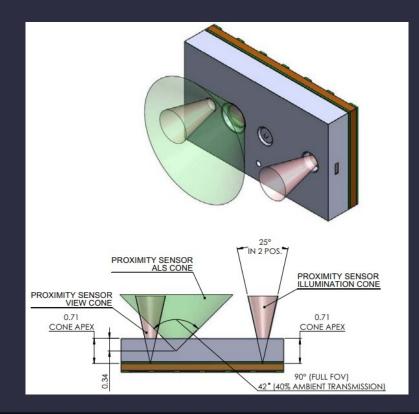
System Design with Sensors I - Baremetal

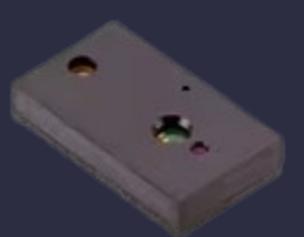
- Sensor Development Boards
 - Sensors
 - Gyroscope, MPU6050 Register Space
 - Disable sleep mode
 - Read Registers 59 to 72 for Gyro and Acc Data



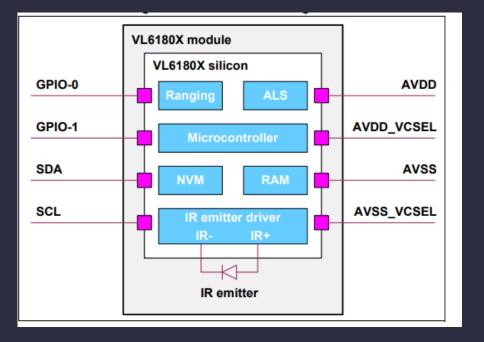
- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C
 - ToF distance sensor module based on the VL6180X system. It uses FlightSense[™] technology that allows you to measure the absolute distance regardless of the color and surface of the detected object.
 - Range: 2 to 50 cm
 - Dead zone: 0 to 2 cm
 - Interface: I2C
 - I2C address: 0x29
 - Viewing Angle (FOV): 25°
 - Power supply: 3 to 5 V

Details:


https://www.st.com/en/imaging-and-photonicssolutions/vl6180x.html

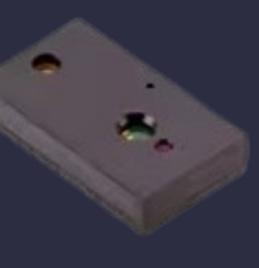


- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C



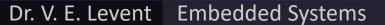
- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C, I/Os

- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C, Register Map

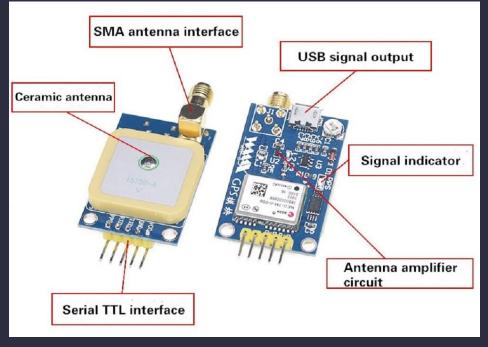


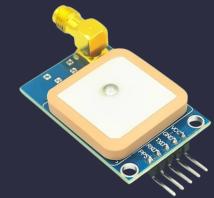
Offset	Register name
0x000	IDENTIFICATIONMODEL_ID
0x001	IDENTIFICATIONMODEL_REV_MAJOR
0x002	IDENTIFICATIONMODEL_REV_MINOR
0x003	IDENTIFICATIONMODULE_REV_MAJOR
0x004	IDENTIFICATIONMODULE_REV_MINOR
0x006	IDENTIFICATIONDATE_HI
0x007	IDENTIFICATIONDATE_LO
0x008:0x009	IDENTIFICATIONTIME
0x010	SYSTEMMODE_GPI00
0x011	SYSTEMMODE_GPI01
0x012	SYSTEMHISTORY_CTRL
0x014	SYSTEM_INTERRUPT_CONFIG_GPIO
0x015	SYSTEM_INTERRUPT_CLEAR
0x016	SYSTEM_FRESH_OUT_OF_RESET
0x017	SYSTEMGROUPED_PARAMETER_HOLD
0x018	SYSRANGE_START
0x019	SYSRANGETHRESH_HIGH
0x01A	SYSRANGETHRESH_LOW
0x01B	SYSRANGEINTERMEASUREMENT_PERIOD
0x01C	SYSRANGEMAX_CONVERGENCE_TIME
0x01E	SYSRANGECROSSTALK_COMPENSATION_RATE
0x021	SYSRANGECROSSTALK_VALID_HEIGHT
0x022	SYSRANGEEARLY_CONVERGENCE_ESTIMATE
0x024	SYSRANGEPART_TO_PART_RANGE_OFFSET
0x025	SYSRANGE_RANGE_IGNORE_VALID_HEIGHT
0x026	SYSRANGE_RANGE_IGNORE_THRESHOLD
0x02C	SYSRANGEMAX_AMBIENT_LEVEL_MULT
0x02D	SYSRANGERANGE_CHECK_ENABLES
0x02E	SYSRANGEVHV_RECALIBRATE
0x031	SYSRANGEVHV_REPEAT_RATE
0x038	SYSALS_START
0x03A	SYSALS_THRESH_HIGH
0x03C	SYSALSTHRESH_LOW

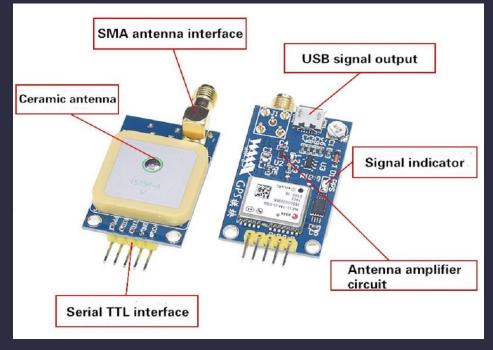
- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C, Register Map

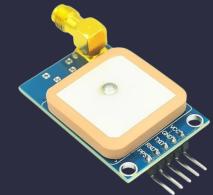


Offset	Register name
0x03E	SYSALS_INTERMEASUREMENT_PERIOD
0x03F	SYSALS_ANALOGUE_GAIN
0x040	SYSALS_INTEGRATION_PERIOD
0x04D	RESULT_RANGE_STATUS
0x04E	RESULT_ALS_STATUS
0x04F	RESULT_INTERRUPT_STATUS_GPIO
0x050	RESULT_ALS_VAL
0x052:0x060 (0x2)	RESULTHISTORY_BUFFER_x
0x062	RESULT_RANGE_VAL
0x064	RESULT_RANGE_RAW
0x066	RESULT_RANGE_RETURN_RATE
0x068	RESULT_RANGE_REFERENCE_RATE
0x06C	RESULT_RANGE_RETURN_SIGNAL_COUNT
0x070	RESULT_RANGE_REFERENCE_SIGNAL_COUNT
0x074	RESULT_RANGE_RETURN_AMB_COUNT
0x078	RESULT_RANGE_REFERENCE_AMB_COUNT
0x07C	RESULT_RANGE_RETURN_CONV_TIME
0x080	RESULT_RANGE_REFERENCE_CONV_TIME
0x10A	READOUTAVERAGING_SAMPLE_PERIOD
0x119	FIRMWAREBOOTUP
0x120	FIRMWARERESULT_SCALER
0x212	I2C_SLAVE_DEVICE_ADDRESS
0x2A3	INTERLEAVED_MODEENABLE

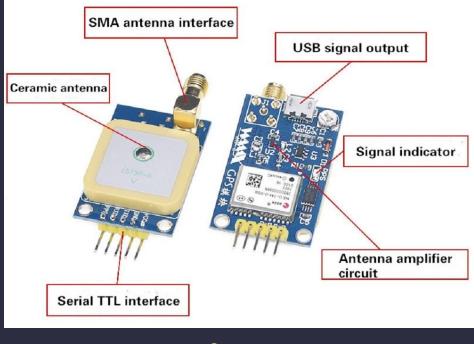

- Sensor Development Boards
 - Sensors
 - Laser Distance Measurement, TOF050C
 - Measurement
 - Write SYSRANGE_START (Addr 0x0) to 1
 - Wait RESULT_INTERRUPT_STATUS Register 0x4F
 - Read RESULT_RANGE_VAL Register 0x62

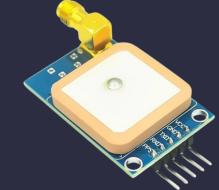



- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M
 - GPS Satellite Positioning Module
 - UART Interface
 - NMEA (National Marine Electronics Association) 0183
 - Details:
 - <u>https://content.u-</u> blox.com/sites/default/files/products/documents/NEO-7 DataSheet %28UBX-13003830%29.pdf



- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M
 - GPRMC (Recommended Minimum Navigation Information):Provides essential data including time, date, latitude, longitude, speed, and course over ground.
 - GPGGA (Global Positioning System Fix Data):Contains detailed fix information such as latitude, longitude, altitude, fix quality, and the number of satellites used.
 - GPGSA (GPS DOP and Active Satellites):Indicates which satellites are being used for the fix and provides dilution of precision (DOP) values for positioning accuracy.
 - GPGSV (GPS Satellites in View):Lists all satellites in view along with details like satellite ID, elevation, azimuth, and signal-to-noise ratio.
 - GPVTG (Track Made Good and Ground Speed):Reports the ground track (direction) and speed over ground.
 - GPGLL (Geographic Position Latitude/Longitude):Outputs the current position (latitude and longitude) along with a status indicator to show if the data is valid.

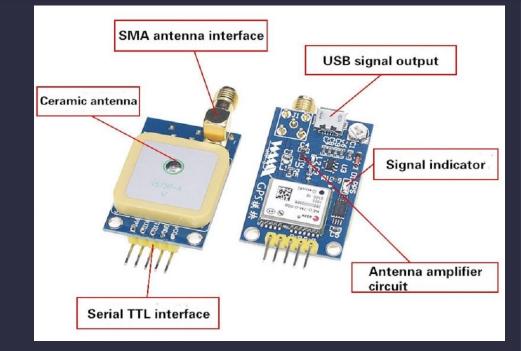


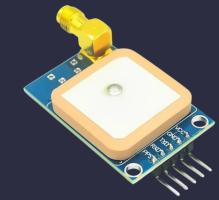


- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M
 - Sample NMEA Message

Text Console

\$GBGSV, 3, 3, 11, 27, 58, 131, 33, 20, 16, 217, 28, 32, 72, 199, 34, 8*40 \$GBGSV,1,1,04,05,38,141,34,13,22,059,27,02,22,114,35,09,14,107,28,8*07 \$GAGSV, 2, 1, 05, 33, 60, 068, 32, 10, 26, 299, 24, 12, 49, 312, 30, 19, 44, 156, 27, 1*79 \$GAGSV,2,2,05,26,16,099,29,1*48 \$GAGSV, 2, 1, 05, 33, 60, 068, 33, 10, 26, 299, 26, 12, 49, 312, 32, 19, 44, 156, 28, 2*74 \$GAGSV, 2, 2, 05, 26, 16, 099, 25, 2*47 \$GAGSV,1,1,04,33,60,068,34,12,49,312,36,19,44,156,30,31,12,223,25,7*7F \$GNGGA,115144.00,3953.37121850,N,03243.10270985,E,2,06,2.2,955.0549,M,37.3246,M,02,0001*77 \$GNZDA, 115144.00, 12, 06, 2024, , *7D \$GNGSA,M,3,08,21,27,,,,,,,,6.9,2.2,6.6,1*3C \$GNGSA,M,3,65,72,88,,,,,,,6.9,2.2,6.6,2*37 \$GNRMC,115144.00,A,3953.37121850,N,03243.10270985,E,1.197,242.8,120624,4.5,E,D,V*51 \$GNGST,115144.00,1.07,24.68,8.92,59.1708,11.701,17.158,30.796*75 \$GINTG, 242.808, T, 238.325, M, 1.19680, N, 2.21647, K, A*37 \$GPGSV,2,1,05,08,61,274,38,10,56,040,33,21,37,305,35,27,59,192,34,1*62 \$GPGSV,2,2,05,23,22,053,29,1*50 \$GPGSV,1,1,02,10,56,040,26,21,37,305,33,4*60 \$GPGSV,1,1,04,08,61,274,34,10,56,040,30,27,59,192,33,23,22,053,25,8*66 \$GLGSV,1,1,03,65,63,195,35,88,55,338,35,72,51,038,34,1*45 \$GLGSV,1,1,03,65,63,195,28,88,55,338,33,72,51,038,29,3*41 \$GBGSV, 2, 1, 07, 30, 65, 309, 34, 41, 46, 048, 29, 60, 24, 119, 24, 13, 22, 059, 27, 1*78 \$GBGSV.2.2.07.27.58.131.32.20.16.217.25.32.72.199.33.1*48

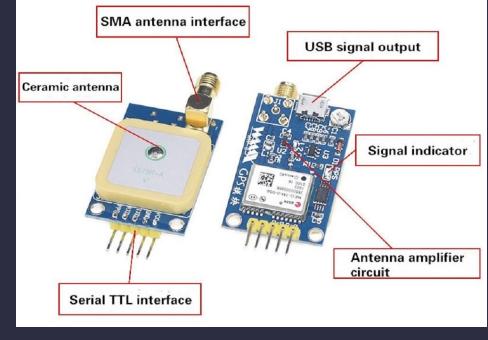


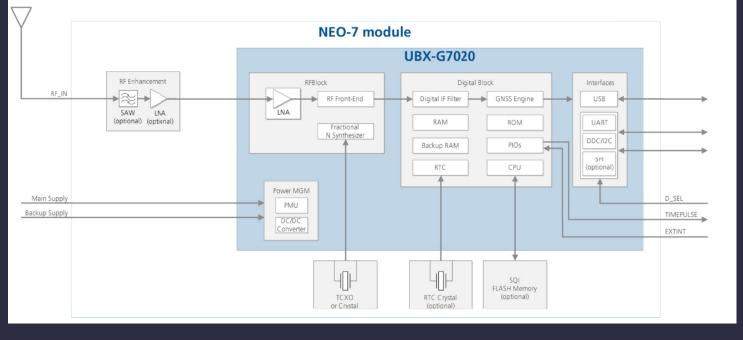

RAN ÜNILERSTEST. 1883

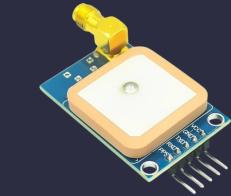
System Design with Sensors I - Baremetal

- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M, I/Os

13	GND		GND	12
14	ANT_ON/I	Reserved	RF_IN	11
15	Reserved		GND	10
16	Reserved		VCC_RF	9
17	Reserved		RESET_N	8
18 19 20 21 22 23 24	SDA SCL TxD RxD V_BCKP VCC GND	NEO-7 Top View	VDD_USB USB_DP USB_DM EXTINT TIMEPULSE D_SEL Reserved	7 6 5 4 3 2 1

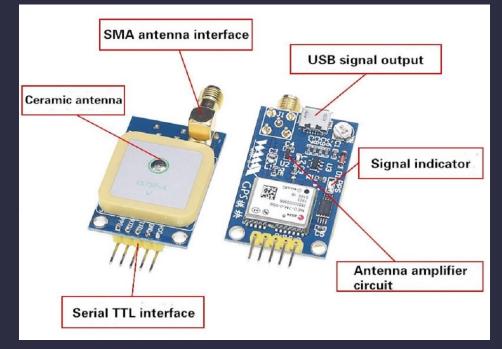


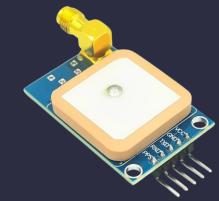



I883

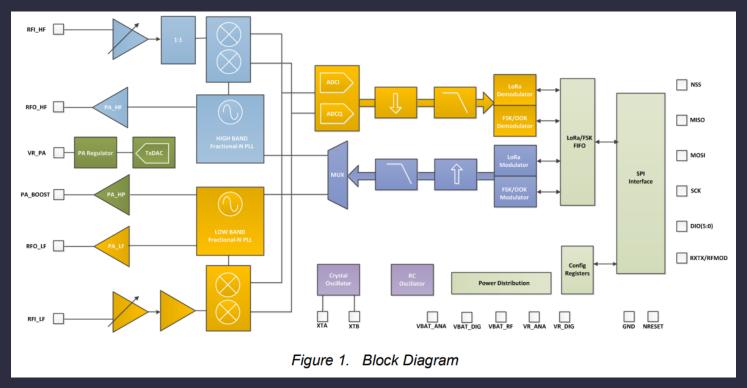
System Design with Sensors I - Baremetal

- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M, Block Diagram





- Sensor Development Boards
 - Sensors
 - GPS, NEO-7M, Example Settings
 - Baud Rate Change: Can change the default baud rate (e.g., from 9600 to 115200) using the UBX-CFG-PRT command.
 - Update Rate Adjustment: Configure the measurement rate (e.g., setting the module to output data at 1 Hz or 5 Hz) with the UBX-CFG-RATE command.
 - NMEA Sentence Control: Enable or disable specific NMEA sentences (like turning off the GPGSV sentence) using UBX-CFG-MSG or similar commands to reduce data load.
 - Dynamic Model Setting: Adjust the dynamic model (e.g., for pedestrian, automotive, or airborne use) via the UBX-CFG-NAV5 command.



- Sensor Development Boards
 - Sensors
 - RF Transceiver, Dorji DRF1278DM
 - Semtech SX1278 IC
 - Voltage: 3,4V-5,5V
 - Communication: UART
 - Maximum Power: 20dBm 100mW
 - Receiver Sensivity 300bps: -138dBm
 - Data Rate: 1,2Kbps 9,6Kbps 57,6Kbps
 - Frequency 420MHz 450MHz
 - Rf Wakeup Time: 2sec 10sec
 - Details:

https://www.semtech.com/products/wireless-rf/lora-connect/sx1278

- Sensor Development Boards
 - Sensors
 - RF Transceiver, Dorji DRF1278DM, Block Diagram

PRA UNIL

1883

E

ж Semtech SX1278

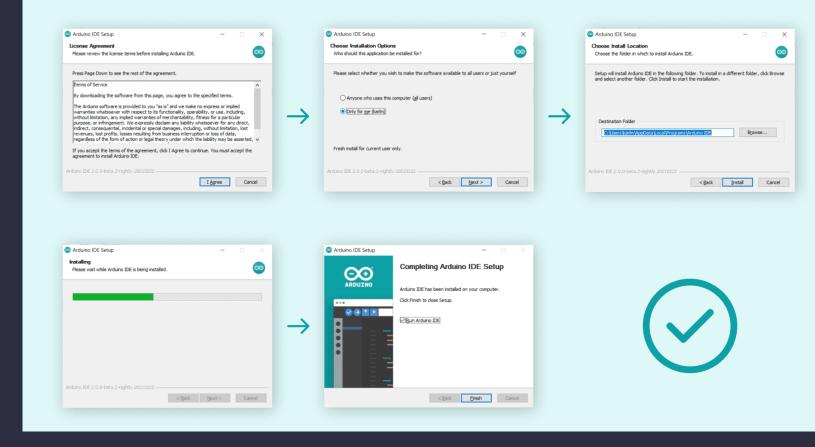
RA ÜNILERSITES. 1883

System Design with Sensors I - Baremetal

- Sensor Development Boards
 - Sensors
 - RF Transceiver, Dorji DRF1278DM, Block Diagram

DRF TOOLDR	F1278DM/1276DM	×
Usart Open BaudRate 9600 Parity NO	RF_frequency RF_F 433.00 MHz RF_Mode RF_B Standarc< Mode	8 V Chips
DOR		ky NO -
Applied Technolo Closed	gees yying All	11:53

• Details:


https://www.dorji.com/docs/data/DRF1278DM.pdf

• Ardunio IDE

Download and Install

https://www.arduino.cc/en/soft ware#experimental-software

RA ÜNIJERSTES, 1883

System Design with Sensors I - Baremetal

• Ardunio IDE

There are two main tools when uploading a sketch to a board: verify and upload.

- The verify tool simply goes through your sketch, checks for errors and compiles it.
- The upload tool does the same, but when it finishes compiling the code, it also uploads it to the board

∞ sketch_dec07a Arduino 1.8.3				\times
File Edit Sketch Tools Help				
				P
sketch_dec07a				
<pre>void setup() { // put your setup code here, to run once:</pre>				
}				
<pre>void loop() { // put your main code here, to run repeatedly:</pre>				
}				
2	A	rduino/Genuir	no Uno on (сомз

RAN ÜNILERSTES, I883

System Design with Sensors I - Baremetal

• Ardunio IDE

A good practice is to use the verifying tool before attempting to upload anything. This is a quick way of spotting any errors in your code, so you can fix them before actually uploading the code.

∞ sketch_dec07a Arduino 1.8.3	_		×
File Edit Sketch Tools Help			
			9 -
sketch_dec07a			
<pre>void setup() { // put your setup code here, to run once:</pre>			^
}			
<pre>void loop() { // put your main code here, to run repeatedly:</pre>			
}			
			~
2	Arduino/Genuin	o Uno on (CM3

• Ardunio IDE

At the very left, there is a checkmark and an arrow pointing right. The checkmark is used to verify, and the arrow is used to upload.

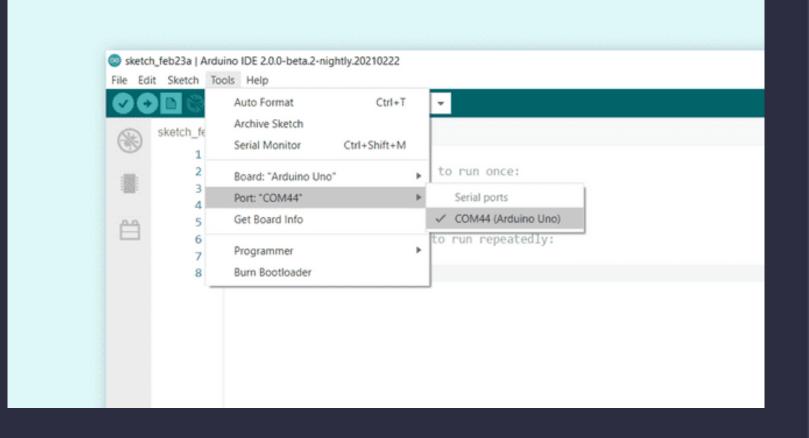
• Ardunio IDE

Click on the verify tool (checkmark).

SUCCESSFUL COMPILATION

Output

Sketch uses 10784 bytes (4%) of program storage space. Maximum is 2621/ Global variables use 1992 bytes (6%) of dynamic memory, leaving 30776 b


Compilation complete.

• Ardunio IDE

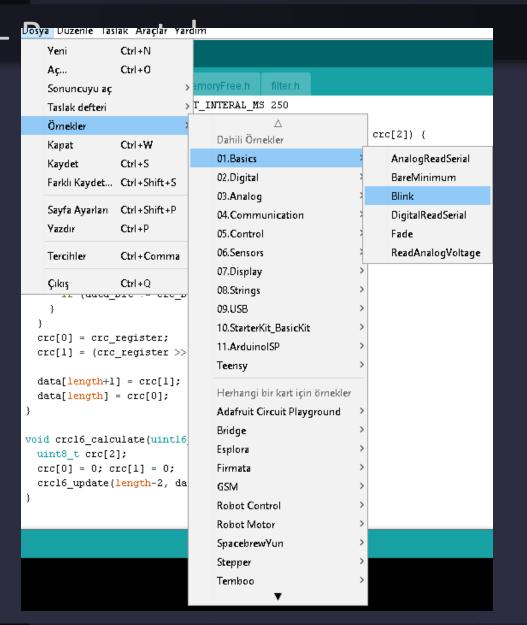
Select the board that we are using

Tools > Port > {Board}

• Ardunio IDE

Click on the upload button, and it will start uploading the sketch to the board

When it is finished, it will notify you in the console log.

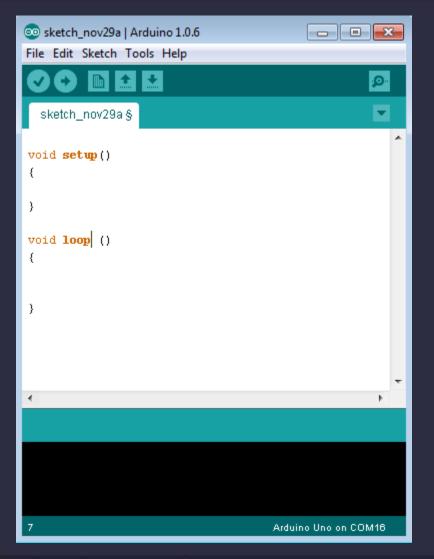

SUCCESSFUL UPLOAD
Oulput Sketch uses 444 bytes (1%) of program storag
Global variables use 9 bytes (8%) of dynamic Compilation complete.
upload complete.

System Design with Sensors I -

• Ardunio IDE

Examples under

File -> Examples ->



• Ardunio IDE

Software structure consist of two main functions

- Setup() function
- Loop() function

Ardunio IDE

void setup () {

}

PURPOSE – The setup() function is called when a sketch starts. Use it to initialize the variables, pin modes, start using libraries, etc. The setup function will only run once, after each power up or reset of the Arduino board.

• Ardunio IDE

void loop () {

PURPOSE – After creating a setup() function, which initializes and sets the initial values, the loop() function does precisely what its name suggests, and loops consecutively, allowing your program to change and respond. Use it to actively control the Arduino board.

• Ardunio IDE

Data types

void	Boolean	char	Unsigned char	byte	int	Unsigned int	word
long	Unsigned long	short	float	double	array	String-char array	String-object

• Ardunio IDE

The pins on the Arduino board can be configured as either inputs or outputs.

pinMode() function can set a pin to input or output

pinMode(3,INPUT) ; // set pin to input without using built in pull up resistor

• Ardunio IDE

Arduino provides four different time manipulation functions

	Function & Description
1	delay () function The way the delay() function works is pretty simple. It accepts a single integer (or number) argument. This number represents the time (measured in milliseconds).
2	delayMicroseconds () function The delayMicroseconds() function accepts a single integer (or number) argument. There are a thousand microseconds in a millisecond, and a million microseconds in a second.
3	millis () function This function is used to return the number of milliseconds at the time, the Arduino board begins running the current program.
4	micros () function The micros() function returns the number of microseconds from the time, the Arduino board begins running the current program. This number overflows i.e. goes back to zero after approximately 70 minutes.

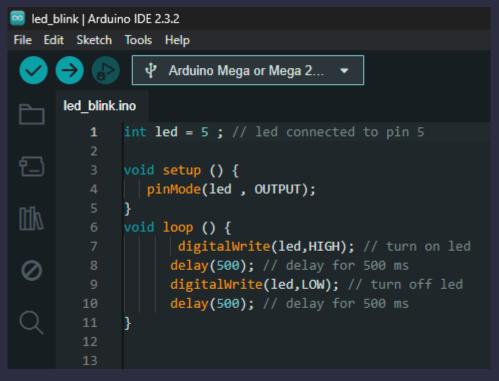
- Ardunio IDE
- digitalWrite() Function

The digitalWrite() function is used to write a HIGH or a LOW value to a digital pin. If the pin has been configured as an OUTPUT with pinMode()

its voltage will be set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW.

• Ardunio IDE

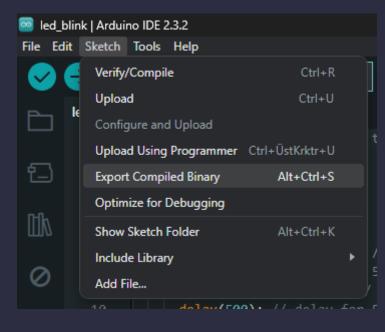
Compilation


Select Board

		rduino IDE 2.3.2						
File Ed	lit Sketch	Tools Help						
		Auto Format	Ctrl+T					
	aleatab ar	Archive Sketch						
	sketch_m	Manage Libraries	Ctrl+ÜstKrktr+I					
	1 2	Serial Monitor	Ctrl+ÜstKrktr+M					
臣		Serial Plotter						
~ ~ ~		Firmware Updater			oin as output			
屾	6	Upload SSL Root Certificates						
		Board: "Arduino Mega or Mega 2560"		Þ	Boards Manager	Ctrl+ÜstKrktr+B		
0	° 9	Port: "COM6"		►	Arduino AVR Boards	Þ		Arduino Yún
	10	Get Board Info						Arduino Uno
	11 12	Processor: "ATmega2560 (Mega 2560)"		►				Arduino Uno Mini
		Programmer		►				Arduino Duemilanove or Diecimila
		Burn Bootloader						Arduino Nano
							~	Arduino Mega or Mega 2560
								Arduino Mega ADK
								Arduino Leonardo
								Arduino Leonardo ETH
								Arduino Micro

• Ardunio IDE

```
int led = 5 ; // led connected to pin 5
void setup () {
    pinMode(led , OUTPUT);
}
void loop () {
    digitalWrite(led,HIGH); // turn on led
    delay(500); // delay for 500 ms
    digitalWrite(led,LOW); // turn off led
    delay(500); // delay for 500 ms
```



Save the Code

Ardunio IDE

Compile and Export as Hex

Output

Sketch uses 1548 bytes (0%) of program storage space. Maximum is 253952 bytes. Global variables use 9 bytes (0%) of dynamic memory, leaving 8183 bytes for local variables. Maximum is 8192 bytes.

No Errors
💼 build
🥯 led_blink
build folder will be created

• Ardunio IDE

Compile and Export as Hex

led_blink.ino.eep	3.03.2025 01:23	EEP Dosyası	1 KB
led_blink.ino.elf	3.03.2025 01:23	ELF Dosyası	20 KB
led_blink.ino.hex	3.03.2025 01:23	HEX Dosyası	5 KB
led_blink.ino.with_bootloader.bin	3.03.2025 01:23	BIN Dosyası	256 KB
led_blink.ino.with_bootloader.hex	3.03.2025 01:23	HEX Dosyası	25 KB

Compiled Hex Code

- Practice on Avionchip MCU Platfrom
- Go to https://www.avionchip.com/trainings/
- Login with your Marmara University Account

- Practice on Avionchip MCU Platfrom
- Find MCU LAB (Arduino Mega 2560) Page from left menu

돠	MCU LAB	^
	MCU LAB (Arduino Mega 2560)	

RA ÜNILEPSITES. 1883


System Design with Sensors I - Baremetal

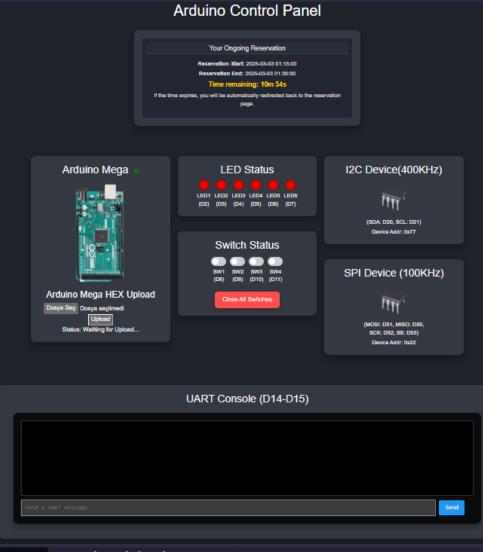
- Practice on Avionchip MCU Platfrom
- You will see reservation page
- Limitations
 - 3 hours per day

Reservation for Hardware: MCU (Arduino Mega 2580)

Server Time: 2025-03-03 01:18:10 +03

Device rights: Limit 1 devices, Daily time limit: 3 hours. Active devices: 1.

Mar 3, 2025 Mar 4, 2025 Mar 5, 2025


Date: Mar 3, 2025 — Your used hours: 0 / 3

Passed	Passed	Passed	Passed	Passed	01:15 - 01:30	01:30 - 01:45	01:45 - 02:00	02:00 - 02:15
02:15 - 02:30	02:30 - 02:45	02:45 - 03:00	03:00 - 03:15	03:15 - 03:30	03:30 - 03:45	03:45 - 04:00	04:00 - 04:15	04:15 - 04:30
04:30 - 04:45	04:45 - 05:00	05:00 - 05:15	05:15 - 05:30	05:30 - 05:45	05:45 - 06:00	06:00 - 06:15	06:15 - 06:30	06:30 - 06:45
06:45 - 07:00	07:00 - 07:15	07:15 - 07:30	07:30 - 07:45	07:45 - 08:00	08:00 - 08:15	08:15 - 08:30	08:30 - 08:45	08:45 - 09:00
09:00 - 09:15	09:15 - 09:30	09:30 - 09:45	09:45 - 10:00	10:00 - 10:15	10:15 - 10:30	10:30 - 10:45	10:45 - 11:00	11:00 - 11:15
11:15 - 11:30	11:30 - 11:45	11:45 - 12:00	12:00 - 12:15	12:15 - 12:30	12:30 - 12:45	12:45 - 13:00	13:00 - 13:15	13:15 - 13:30
13:30 - 13:45	13:45 - 14:00	14:00 - 14:15	14:15 - 14:30	14:30 - 14:45	14:45 - 15:00	15:00 - 15:15	15:15 - 15:30	15:30 - 15:45
15:45 - 16:00	16:00 - 16:15	16:15 - 16:30	16:30 - 16:45	16:45 - 17:00	17:00 - 17:15	17:15 - 17:30	17:30 - 17:45	17:45 - 18:00
18:00 - 18:15	18:15 - 18:30	18:30 - 18:45	18:45 - 19:00	19:00 - 19:15	19:15 - 19:30	19:30 - 19:45	19:45 - 20:00	20:00 - 20:15
20:15 - 20:30	20:30 - 20:45	20:45 - 21:00	21:00 - 21:15	21:15 - 21:30	21:30 - 21:45	21:45 - 22:00	22:00 - 22:15	22:15 - 22:30
22:30 - 22:45	22:45 - 23:00	23:00 - 23:15	23:15 - 23:30	23:30 - 23:45	23:45 - 00:00			

• Practice on Avionchip MCU Platfrom

• MCU Control Page

• Practice on Avionchip MCU Platfrom

- MCU Control Page
- Choose Hex Code and click Upload

- Ardunio IDE
- Digital Read
- Digital Write

int led = 5; int sw = 8;

void setup() {
 pinMode(led, OUTPUT);
 pinMode(sw, INPUT);
}

void loop() {
 int swState = digitalRead(sw);

int delayTime = (swState == HIGH) ? 1000 : 500;

digitalWrite(led, HIGH); // LED'i aç delay(delayTime); // delayTime kadar bekle digitalWrite(led, LOW); // LED'i kapat delay(delayTime); // delayTime kadar bekle

• Ardunio IDE

UART (Universal Asynchronous Receiver Transmitter)

void setup() {
 Serial3.begin(9600);
}

```
void loop() {
    if (Serial3.available() > 0) {
        String input = Serial3.readStringUntil('\n');
        input.trim();
        if (input.equals("hello")) {
            Serial3.println("how are you");
        } else {
            Serial3.println("i dont know");
        }
    }
}
```