
Embedded Systems

Dr. Vecdi Emre Levent

Week 6: Combinational Circuits
Embedded Linux

Embedded SystemsDr. V. E. Levent

Assist. Prof. Dr. Vecdi Emre Levent

Email : emre@levent.tc

emre.levent@marmara.edu.tr

Web: www.levent.tc

Instructors

mailto:emre@levent.tc
mailto:emre.levent@marmara.edu.tr
http://www.levent.tc/

Embedded SystemsDr. V. E. Levent

• Computer Hardware

• Softwares that require performance can
be only written by who have a deep
understanding of hardware.

• Almost all electronic devices are digital

• Audio recorders , cameras , vehicles
ph1s , medical devices…

• Developing equipment needed in
almost every industry

• It is an area that is highly needed both in
our country and abroad. It could be a
different career goal for you.

Why Digital Systems?

Embedded SystemsDr. V. E. Levent

What Does Digital Mean?

• Analog Signal
• It has infinite possible value.

• For example, the vibration
created by a microph1 on the
line.

V
al

u
e

Time

va
lu

e

Time

Analog Signal
3 421

2 Digital
signal

• Digital Signal
– Finite possible values

• For example : Pressing a
button on a keypad

0
1
2
3
4

Likely Values
1.00, 1.01, 20000009,
... endless possibilities

Possible values :
0, 1, 2, 3, or 4.

There are no other possible values

Embedded SystemsDr. V. E. Levent

Digital Signals with Only Two Values: Binary

• Binary digital signals have only two
possible values

• These are shown as 0 and 1

• A binary digit is expressed as a "bit".

• Within the scope of the course, binary
digital systems will be considered.

• Binary is popular because:
• Transistors , the most basic digital

electrical comp1nt , operate at two
voltage values (0 and 1)

V
al

u
e

Time

1
0

Embedded SystemsDr. V. E. Levent

Advantages of Digitization

• Analogue signal is very
sensitive to noise

• During transmission, voltage
levels may change due to
many factors.

• Digital signals are more
resistant to degradation during
transmission.

• Voltage levels still may not
transmit perfectly

• However, some distorted 1s
and 0s can be recovered.

time

V
o

lt

0
1

2

3

Original Signal

time
0
1

2

3

Received Signal

How can it be fixed???

V
o

lt

01 10 11th10 11th

time

01 10 11th10 11th

V
o

lt

Digital Signal

time
0

1

ADC

V
o

lt
0
1

2

3
DAC

time
Distorted 1s and 0s can be

easily fixed

0

1

Embedded SystemsDr. V. E. Levent

Digitized Content, Compression Benefits

• Digitized Audios can be
compressed

• eg . MP3

• Compression can also be d1
on photos (jpeg) or videos
(mpeg)

• Digitization has many
different advantages.

0000000000 0000000000 0000001111 11111111111

00 00 10000001111 01

Example Compression Table
00 --> 0000000000
01 --> 11111111111

1X --> X

Embedded SystemsDr. V. E. Levent

Binary Data Encode

• If button is not pressed (0), if
pressed (1)

• Multi-button : coding
1st button =001, 2nd button
=010, ...

• Some inputs are analog
• Requires an analog-to-digital

converter to switch to digital.

• ADC (Analog to Digital Converter):
Converts analog signal to digital

• DAC (Digital to Analog Converter):
Converts digital signal to analog

0

Butpn

1

3 421

0 00

1

0 10

432

1 00

3 421

Temperature Sensor

Weather

0 0 1 10 0 0 0

33 Degrees

sensors

Digital System
Processing Unit

Analog Outputs

ADC

DAC

Analogue World Data

Electrical Signal

Digital Data

Digital Data

Electrical Signal

Digital Data

Digital Data

Embedded SystemsDr. V. E. Levent

ASCII Encoding
• ASCII: 8 bits of each character

and symbol. It is a table with
the corresponding

1010010

1010011

1010100

1001100

1001110

1000101

0110000

0101110

0001001

R

S

T

L

N

TO

0

.
<tab>

Symbol Mostcoding

1110010

1110011

1110100

1101100

1101110

1100101

0111001

0100001

0100000

r

s

t

l

n

to

9

!
<space>

Symbol Mostcoding

1010010 1000101 1010011 1010100

REST

Embedded SystemsDr. V. E. Levent

Numbers Encoding

• Decimal base (decimal)
• There are 10 symbols : 0, 1, 2, ..., 8, and 9

• After 9 comes a new digit
• So each digit is a power of 10.

• Base of 10 is used as it is suitable for daily life
operations.

• Binary Base (binary)
• There are two symbols : 0 and 1

• New power comes after 1
• So each digit is a power of 2.

24 23 22

1 0 1

21 20

102

5 2 3

101 100

24 23 22 21 2029 28 27 26 25

16 8 4 2 1512 256 128 64 32

Embedded SystemsDr. V. E. Levent

Boolean Algebra

• Logic Gates are built with
x

0

0

1

1

y

0

1

0

1

F

0

0

0

1

x

0

0

1

1

y

0

1

0

1

F

0

1

1

1

x

0

1

F

1

0

Fx
x

y F

ORNHET

F
x

y

AND

0

1

y

x

x

y
F

1

0

Fx

Symbol

Truth Table

Transistor
circuit

0

1

x y

F
y

x

Embedded SystemsDr. V. E. Levent

NOT/OR/AND Logic Gates Time Diagram

0

1

1

0

time

F

x
1

0
x

y

F
1

1

0

0

time

1

0
x

y

F
1

1

0

0

time

x x
x

y
y

F F
F

Embedded SystemsDr. V. E. Levent

Boolean Algebra Example

• a=1, b=1, c=1, d=0

F = (a AND b) OR (c AND d)

Answer : F = (1 AND 1) OR (1 AND 0)
= 1 OR 0 = 1.

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1

a
0
0
1
1

b
0
1
0
1

OR
0
1
1
1

a
0
1

NOT
1
0

Embedded SystemsDr. V. E. Levent

Boolean Algebra Example

• boolean equation

given below F = a AND NOT(b OR NOT(c))

a
b

c

F

Embedded SystemsDr. V. E. Levent

Truth Tables

• F indicates output.

• 2- Input : 4 lines

• 3- Input : 8 lines

• 4- Input : 16 lines

c

0

0

1

1

0

0

1

1

0

0

1

1

0

0

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

a

0

0

0

0

0

0

0

0

1

1

1

1

1

1

b

0

0

0

0

1

1

1

1

0

0

0

0

1

1

Fc

0

1

0

1

0

1

0

1

a

0

0

0

0

1

1

1

1

b

0

0

1

1

0

0

1

1

Fa

0

0

1

1

b

0

1

0

1

F

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• The computer is an electronic circuit.
• It basically works by controlling the flow of electrons.

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• Electrons are controlled by " Transistors " .
• It basically works by controlling the flow of electrons.

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• Electrons are controlled by " Transistors " .
• It basically works by controlling the flow of electrons.

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• Electrons are controlled by " Transistors " .
• It basically works by controlling the flow of electrons.

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• Data has two states :
1. the voltage (Voltage) exists – This state is called "1".

2. The state where the voltage disappears - This state is called "0".

Embedded SystemsDr. V. E. Levent

How is Data Stored on a Computer?

• It is also possible to make a computer that works according to
more than two voltage states.

• But the control circuit of this computer will be much more complex.

• For this reason, today's modern computers work with the concept of bit,
which is the smallest unit, while expressing information.

• It is the smallest data storage unit that can hold 0 or 1 on a bit.

Embedded SystemsDr. V. E. Levent

The computers works with binary system.

• Larger storage areas are obtained by combining multiple bits.
• two bits , 4 different numbers can be expressed.

Binary system :

• It has two states : 0 and 1

Embedded SystemsDr. V. E. Levent

The computers works with binary system.

• Two bits , 4 different numbers can be expressed.

• 00 = 0 (in decimal)

• 01 = 1

• 10 = 2

• 11 = 3

Embedded SystemsDr. V. E. Levent

The computers works with binary system.

• 3 bits 8 numbers can be expressed by combining them :

• 000 = 0

• 001 = 1

• 010 = 2

• 011 = 3

• 100 = 4

• 101 = 5

• 110 = 6

• 111 = 7

Embedded SystemsDr. V. E. Levent

The computers works with binary system.

• In summary;

• 2 n with n bits different numbers can be expressed.

• 2 = 4 different numbers for 2 bits

• 2 3 = 8 different numbers for 3 bits

• 2 4 = 16 different numbers for 4 bits

…

can be expressed.

Embedded SystemsDr. V. E. Levent

What types of data are expressed / stored in the computer?

• Numbers – signed (unsigned) , integers , decimal numbers (floating _ _ _ _
point), complex numbers (complex) , rational , irrational , …

• Texts – Characters (characters) , texts (string) , …
• Images – pixels , images , …
• Sound
• Logic (logic) – true (true) , false (false)
• Operations (Instructions)
• …

• Let's start with the numbers ...

Embedded SystemsDr. V. E. Levent

Unsigned (Unsigned) Integers (Integers)

• Unsigned integers
• They always store positive values

• Ex :

329 (in base 10)

10 2 10 1 10 0

101 (in base 2)

2 2 2 1 2 0

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

Embedded SystemsDr. V. E. Levent

Unsigned Integers

• An n - bit unsigned integer 2 n has a value :
from 0 to 2 n -1 .

2 2 2 1 2 0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Embedded SystemsDr. V. E. Levent

Unsigned Binary Base Arithmetic

• Binary base addition (like base 10)
• It is collected starting from the rightmost, and if it is available,

it is transferred to the next total.

10010 10010 1111

+ 1001 +1011 + 1

11011 11101 10000

Embedded SystemsDr. V. E. Levent

Signed Integers (Integrs)

• With n bits , we can store 2 n different values .

• 2 n different value;

• Signed integers are obtained by assigning half to positive numbers and
half to negative numbers.

• Positive numbers 1 to 2 n-1

Negative numbers -(2 n-1) to -1

• For example , if we have a 3-bit storage;

• Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.

Embedded SystemsDr. V. E. Levent

Signed Integers (Integrs)

• For example , if we have a 3-bit storage;

• Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.

• If the number 0 is also used, a number from either positive or negative
part is expressed as 0.

Embedded SystemsDr. V. E. Levent

Signed Integers (Integrs)

• Positive integers
• They are like unsigned integers.

00101 = 5

• Negative integers
• Sign Bit Representation – Always sign bit is first bit,

Other bits are written as in unsigned representation.
10101 = -5

• 1 's complement – Each bit is inverted
. 11010 = -5

• In both representations, the largest bit represents the sign of the number :
0= positive , 1= negative

Embedded SystemsDr. V. E. Levent

Two’s complement
• Sign bit notation and 1 's complement problems

• The number 0 has two representations (+0 and –0)

• Sign Bit
0 0 0 0 0 = +0
1 0 0 0 0 = - 0

• 1 's complement

00000 = +0
11111 = -0

Embedded SystemsDr. V. E. Levent

Two’s complement
• Sign bit notation and 1 's complement problems

• The necessary hardware circuits of arithmetic operations are very
complex.

• Problem with sign bit denoted addition

• For the solution, before adding, it is necessary to check which one is larger,
subtract the smaller from the larger, and place the sign of the larger number.

• Therefore, it is necessary to have a circuit, subtractor and sign bit setter in the
necessary hardware to perform the necessary addition process. That is, the
hardware becomes complex and large.

1 0 1 1 (-3)

+ 0 0 1 0 (2)

 1 1 0 1 (-5) → Wrong

Embedded SystemsDr. V. E. Levent

Two’s Complement

• If the value to be expressed is 0 or positive ,
• They are written as unsigned integers, with the largest bits filled with 0.

• If the number is negative ,
• written as a positive number

• Each bit is inverted (1's complement)

• 1 is added to the result.

00101 (5) 01001 (9)

 11010 (1 's complement) 1 0110 (1's complement)

+ 1 + 1

11011 (-5) 10111 (-9)

Embedded SystemsDr. V. E. Levent

Two’s Complement

• Shortcut to find Two’s complement :
• Copy bits of the number from right to left until you see the first "1"

• Reverse remaining bits

 011010000 011010000

 100101111 (1’s Complement)

 + 1

 100110000 100110000

(Copy)
(Translate)

Embedded SystemsDr. V. E. Levent

Two’s complement

• Biggest bit sign bit and weight –2 n-1 is .

• -2 n-1 with n bits It can be expressed from 2 n-1 to 1 .
• The smallest negative number (-2 n-1) has no positive counterpart .

-23 22 21 20

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

-23 22 21 20

1 0 0 0 -8

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1

Embedded SystemsDr. V. E. Levent

Convert binary complement to base 10

1. If the largest bit (leftmost) is 1, take the twos
complement of the number and find its positive
value.

2. Add the values by multiplying by powers of 2,
starting with the rightmost bit.

3. If the number is negative when starting the process
(i.e. its leftmost bit is 1), put a - sign on the base 10
number that appears.

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024
X = 01101000 binary

= 2 6 +2 5 +2 3 = 64+32+8

= 104 tens

Embedded SystemsDr. V. E. Levent

Convert binary complement to base 10

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

X = 00100111 binary

= 2 5 +2 2 +2 1 +2 0 = 32+4+2+1

= 39 tens

X = 11100110 binary

-X = 00011010

= 2 4 +2 3 +2 1 = 16+8+2

= 26 tens

X = -26 tens

Embedded SystemsDr. V. E. Levent

Decimal to Binary Complement Conversion

• Method 1 : Division
1. Get the absolute value of the decimal number . (It should always be positive .)

2. Divide by two – remainder is the smallest bit .

3. Keep dividing until you find 0, and write the remainder of the divisions from right to left.

4. Add zeros to the most right for completing width of the number. (in the example below the
number is assumed to be 8 bits)
If the decimal number is negative, take the binary complement of the resulting number.

X = 104tens 104/2 = 52 k0 bit 0

 52/2 = 26 k0 bit 1

 26/2 = 13 k0 bit 2

 13/2 = 6 k1 bit 3

 6/2 = 3 k0 bit 4

 3/2 = 1 k1 bit 5

 X = 01101000binary 1/2 = 0 k1 bit 6

Embedded SystemsDr. V. E. Levent

Decimal to Binary Complement Conversion

• Second Method : Subtracting powers of 2

1. Get the absolute value of the decimal number.

2. Subtract the number less than or equal to the
number from the powers of 2.

3. Place 1 in the relevant place .

4. Keep going until you get 0 .

5. Add zeros to the most right for completing width
of the number. If the decimal number is negative,
take the binary complement of the resulting binary
number

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Embedded SystemsDr. V. E. Levent

Decimal to Binary Complement Conversion

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

X = 104tens 104 - 64 = 40 bit 6

 40 - 32 = 8 bit 5

 8 - 8 = 0 bit 3

 X = 01101000binary

Embedded SystemsDr. V. E. Levent

Addition

• Binary complement numbers is similar to the addition of unsigned
numbers. No control mechanism is required.

• The hand bit to be obtained from the largest bit is discarded.

 01101000 (104)

 + 11110000 (-16)

 01011000 (88)

Embedded SystemsDr. V. E. Levent

Subtraction

• Find the negative form of the second number and add .
• Binary complement of the second number and add it with the first

number

 01101000 (104)

 - 00010000 (16)

 01101000 (104)

 + 11110000 (-16)

 01011000 (88)

Embedded SystemsDr. V. E. Levent

Sign Extension

• When adding two numbers, both numbers must have the same bit width.

• If we just add 0 to the left of the two numbers to make them the same bit
width;

• For correct calculation, the sign bit of the number is placed where it will be
expanded.

4-bit 8-bit
0100 (4) 00000100 (currently 4)

1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (currently 4)

1100 (-4) 11111100 (currently -4)

Embedded SystemsDr. V. E. Levent

Overflow

• When numbers are very large , the sum may turn out to
be too large to be expressed in n-bit numbers .

• Overflow status :

• It can happen in addition operations where both numbers
have the same sign .

 01000 (8) 11000 (-8)

 + 01001 (9) + 10111 (-9)

 10001 (-15) 01111 (+15)

Embedded SystemsDr. V. E. Levent

Logic Operations

• Are calculated as
• There are two cases, True =1, False =0

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

A Not A

0 1

1 0

Embedded SystemsDr. V. E. Levent

Logic Operation Examples

• And
• With 0 = result is 0

• With 1 = result no change

• Or
• With 0 or operation = no change

• With 1 or operation = 1

• Not
• It changes every bit.

 11000101

 and 00001111

 00000101

 11000101

 or 00001111

 11001111

not 11000101

 00111010

Embedded SystemsDr. V. E. Levent

Hexadecimal Notation

• It is a 16 bit format that is frequently used on computers.
• Each 4 bits of a binary number represents a hexadecimal representation.

• It provides fewer mistakes than using long 0's and 1's.

Bin Hex Dec

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

Bin Hex Dec

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Embedded SystemsDr. V. E. Levent

Converting from Binary to Hexadecimal

• Each 4 bits equals 1
• They are grouped starting from the right.

011101010001111010011010111

7D4F8A3

Embedded SystemsDr. V. E. Levent

Decimal Numbers : Fixed -Point Representation

• Decimals expression
• A point is chosing for seperating integer and fraction parts

• Addition and subtration operations are calculating as twos complement
operations

 00101000.101 (40.625)

 + 11111110.110 (-1.25)

 00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

Embedded SystemsDr. V. E. Levent

Texts : ASCII Characters

• The ASCII table is an 8-bit table. Each number between 0-255 has a
corresponding character or control signal.

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

Embedded SystemsDr. V. E. Levent

Other Data Types

• Texts
• Formed by sequential writing of characters

• Image
• They are formed by the combination of pixels.

• Black and White : 1 bit (1/0 = black / white)

• Color : Red, Blue, Green (RGB) comp1nts are available. Each is stored
as 8-bit numbers.

• Sound
• It is usually represented as a sequential recording of fixed-

point notation numbers.

Embedded SystemsDr. V. E. Levent

Design of Processor Blocks with

• Number of Transistors in Processors

• Intel 4004 (1971): 2250

• Intel 8088 (1979): 29k

• AMD K6 (1997): 7.5 million

• Intel Pentium 4 (2006): 184 Million

• Intel I7 Haswell -E (2014): 2.6 Billion

• AMD Epyc Rome (2019): 32 Billion

Embedded SystemsDr. V. E. Levent

Decoder and MUX

• Decoder : Activates the pin corresponding to the
number received in the input.

• 2 -input decoder: There are 4 possible inputs.
• It has 4 outputs

• Enable with pin decoder
• If e=0 , all outputs are 0

• If e=1 , it behaves normally

• N input decoder: 2 n exit

i0

i1

d0

d1

d2

d3 1

1

1

0

0

0

i0

i1

d0

d1

d2

d3 0

0

0

0

0

1

i0

i1

d0

d1

d2

d3

i0

i1

d0

d1

d2

d30

0

1

0

1

0

0

1

0

1

0

0

i0

d0

d1

d2

d3

i1

i0

i1

d0

d1

d2

d3e 1

1

1

1

0

0

0

e

i0

i1

d0

d1

d2

d3 0

1

1

0

0

0

0

i1’i0’

i1’i0

i1i0’

i1i0

Embedded SystemsDr. V. E. Levent

Multiplex e r (Mux)

• Mux: It is a combinational circuit. Outputs incoming
inputs according to the select bit.

• 4 input mux → 2 select inputs

• 8 input mux → 3 select input

• N inputs → log 2 (N) select input

Embedded SystemsDr. V. E. Levent

Mux Internal Structure

s0

d

i0

i1

2×1

i1

i0

s0

1

d

2×1

i1

i0

s0

0

d

2×1

i1

i0

s0

d

0

1

0

2x1 mux

i0

4 1

i2

i1

i3

s1 s0

d

s0

d

i0

i1

i2

i3

s1

4x1 mux

0

Embedded SystemsDr. V. E. Levent

MUX Merge

• Example : Two 4-bit inputs , A (a3 a2 a1 a0) and B (b3 b2 b1 b0)
• 4-bit 2x1 MUX can be done using 4 1 bit, 2x1 MUX

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

a3
b3

I0

s0

s0

I1

4-bit
2x1

D C

A

B

a2
b2

a1
b1

a0
b0

s0

4

C
4

4

4

c3

c2

c1

c0

=

Embedded SystemsDr. V. E. Levent

N-bit MUX Example

• There are 4 possible texts to display
• Temperature , Average Fuel Usage , Average Speed , KM Remaining - all
• Which one will appear on the screen is selected with the x and y bits.
• 8-bit 4x1 MUX can be used.

Embedded SystemsDr. V. E. Levent

Gate Delays

• All circuits have a delay.
• Outputs don't change instantly

Digital DesignDr. V. E. Levent

From Logic Gates to Control Units

• Combinational Circuits
• The output of the circuit depends on the current input.

• The output delay of the circuit depends on the longest path in the
circuit.

Digital DesignDr. V. E. Levent

From Logic Gates to Control Units

• Sequential Circuits
• The output depends on both the current input and the values

in memory.

• Some outputs of the circuit are stored in memory and reused.

• We'll get into the details next week.

Digital DesignDr. V. E. Levent

Multiplexer - MUX

• n - bit select, 2 n input and It has only one output.
• According to the select bit, the value from the input is transferred to the

output.

4-1 MUX
2 -1 MUX

Digital DesignDr. V. E. Levent

Selector (Multiplexer - MUX)

• n - bit select, 2 n input and It has only one output.
• According to the select bit, the value from the input is transferred to the

output.

2 -1 MUX

Digital DesignDr. V. E. Levent

Full Adder

• Taking two bits (A and B) and a carry input (Cin), it produces a one-bit
sum (S) and carry (Cout) .

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Digital DesignDr. V. E. Levent

4-bit Adder

Digital DesignDr. V. E. Levent

Other Circuits

• Any circuit can be expressed with And, Or and Not gates.

1. In the truth table, do and operation

for 1 outputting rows

2. Combine these and gates with or gate

A B C D

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

Digital DesignDr. V. E. Levent

Vivado Design Tool

• Design Flow

RTL
Design

Synthesis

Various
IPs

Design

Verification

Implementation
FPGA

Configuration

Behavioral
Validation

Timing
Verification

In-Chip
Debugging

Algorithm
Hardware

Architecture

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

What is FPGA?

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

What is FPGA?

Digital DesignDr. V. E. Levent

Chip Design Training

What is FPGA?

• FPGA (Field programmable Gate Arrays) is an integrated chip.

• It contains programmable blocks and configurable connections between these
blocks.

• By programming these blocks and connections, the desired circuit can be
implemented in the FPGA .

Example FPGA Chip

Digital DesignDr. V. E. Levent

Chip Design Training

What is FPGA?

• Some FPGAs can only be programmed once.

• It is called one-time programmable (OTP).

Digital DesignDr. V. E. Levent

Chip Design Training

What is FPGA?

• "Field Programmable" means that it can be programmed in the required application with unlimited
count.

• This means that after the FPGA chips are produced in the factory, they can be used in the desired
design later on.

Digital DesignDr. V. E. Levent

Chip Design Training

Why is FPGA important?

Wide variety of integrated circuits (IC – Integrated circuits) are available.

• Memory

• Microprocessors

• Programmable logic devices (Programmable logic devices)
• SPLD (Simple)

• CPLD (Complex)

• ASIC – Application specific integrated circut

• And FPGAs ...

Digital DesignDr. V. E. Levent

Chip Design Training

ASICs

• They are useful in the implementation of huge and complex circuits.

• ASICs are integrated circuits built to perform a specific operation.

• ASICs provide very high performance (operation at high frequencies) , ASIC design complexity and
design time and costs are quite high.

• And the produced chips cannot be modified . In case of a fault with the chip, all produced chips will be
thrown away.

Digital DesignDr. V. E. Levent

Chip Design Training

FPGAs

• FPGAs It is programmable.

• Unlike ASICs ; In the case of an error in the design, the design can be repeatedly modified and tested.

Digital DesignDr. V. E. Levent

Chip Design Training

FPGAs

• FPGAs They are much cheaper than ASICs . (ASICs are only cheap when millions of units are produced)

• FPGAs is much easier than creating an ASIC design.

• Due to the shorter design time, once a product is produced, the time to market is shorter.

• NRE (Non-recurring engineering) is high when developing a ASIC Design

Digital DesignDr. V. E. Levent

Chip Design Training

FPGA is mainly used

• Telecommunication

• Networking

• Automotive

• Medical

• Various industrial applications

• Prototypes of ASIC designs

• DSP (Digital signal processor) applications

• SoC (System on Chip), a single IC where all necessary electronics are gathered together

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

• Computing Power

• Controlling with nanosecond order

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

Processors FPGA

Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

For 1000 transactions (assume each operation takes 1

cycle),

Average Processor frequency: 3 GHz,

Required Time = Number of operations X (1/Frequency)

= 1000 X 1/3 billion

= 333 nanoseconds

CPU FPGA
For 1000 transactions (assume each operation

takes 1 cycle),

Average FPGA frequency: 100mhz

Time required = 1 x (1/Frequency)

= 1 X 1/100m

= 10 nanoseconds

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

In LABs Xilinx Basys3 FPGAs with Artix 7 FPGAs will be used.

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado IDE will be used to programming Xilinx Based FPGAs

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

• Download Address: https://www.xilinx.com/support/download.html

• Installation and Licensing Video : https://www.youtube.com/watch?v=yW7t28XaVEs

https://www.xilinx.com/support/download.html
https://www.youtube.com/watch?v=yW7t28XaVEs

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

is the FPGA we will use in LABs

XC7A35Tcpg236-1

The model must be selected.

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a new design resource

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

RTL Design

File To Do

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Write constraints

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Most commonly using HDL (Hardware Description Language)
Languages

• Verilog

• System Verilog

• VHDL

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado ,

• Verilog

• system Verilog

• VHDL

It supports languages. Within the scope of the course, designs will
be made with Verilog language.

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

myModule

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

myModule

Verilog Design

module myModule(input a, input b, input c,
output reg y);

endmodule

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

myModule

Verilog Design

module myModule(input a, input b, input c, output reg y);

reg tmp;
always@(*) begin

tmp = a & b;
y = tmp | c;

end

endmodule

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

FPGA

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Constraint (XDC) File

http://levent.tc/files/courses/digital_design/labs/basys3.xdc

http://levent.tc/files/courses/digital_design/labs/basys3.xdc

	Slayt 1: Embedded Systems
	Slayt 2: Instructors
	Slayt 3: Why Digital Systems?
	Slayt 4: What Does Digital Mean?
	Slayt 5: Digital Signals with Only Two Values: Binary
	Slayt 6: Advantages of Digitization
	Slayt 7: Digitized Content, Compression Benefits
	Slayt 8: Binary Data Encode
	Slayt 9: ASCII Encoding
	Slayt 10: Numbers Encoding
	Slayt 11: Boolean Algebra
	Slayt 12: NOT/OR/AND Logic Gates Time Diagram
	Slayt 13: Boolean Algebra Example
	Slayt 14: Boolean Algebra Example
	Slayt 15: Truth Tables
	Slayt 16: How is Data Stored on a Computer?
	Slayt 17: How is Data Stored on a Computer?
	Slayt 18: How is Data Stored on a Computer?
	Slayt 19: How is Data Stored on a Computer?
	Slayt 20: How is Data Stored on a Computer?
	Slayt 21: How is Data Stored on a Computer?
	Slayt 22: The computers works with binary system.
	Slayt 23: The computers works with binary system.
	Slayt 24: The computers works with binary system.
	Slayt 25: The computers works with binary system.
	Slayt 26: What types of data are expressed / stored in the computer?
	Slayt 27: Unsigned (Unsigned) Integers (Integers)
	Slayt 28: Unsigned Integers
	Slayt 29: Unsigned Binary Base Arithmetic
	Slayt 30: Signed Integers (Integrs)
	Slayt 31: Signed Integers (Integrs)
	Slayt 32: Signed Integers (Integrs)
	Slayt 33: Two’s complement
	Slayt 34: Two’s complement
	Slayt 35: Two’s Complement
	Slayt 36: Two’s Complement
	Slayt 37: Two’s complement
	Slayt 38: Convert binary complement to base 10
	Slayt 39: Convert binary complement to base 10
	Slayt 40: Decimal to Binary Complement Conversion
	Slayt 41: Decimal to Binary Complement Conversion
	Slayt 42: Decimal to Binary Complement Conversion
	Slayt 43: Addition
	Slayt 44: Subtraction
	Slayt 45: Sign Extension
	Slayt 46: Overflow
	Slayt 47: Logic Operations
	Slayt 48: Logic Operation Examples
	Slayt 49: Hexadecimal Notation
	Slayt 50: Converting from Binary to Hexadecimal
	Slayt 51: Decimal Numbers : Fixed -Point Representation
	Slayt 52: Texts : ASCII Characters
	Slayt 53: Other Data Types
	Slayt 54: Design of Processor Blocks with
	Slayt 55: Decoder and MUX
	Slayt 56: Multiplex e r (Mux)
	Slayt 57: Mux Internal Structure
	Slayt 58: MUX Merge
	Slayt 59: N-bit MUX Example
	Slayt 60: Gate Delays
	Slayt 61: From Logic Gates to Control Units
	Slayt 62: From Logic Gates to Control Units
	Slayt 63: Multiplexer - MUX
	Slayt 64: Selector (Multiplexer - MUX)
	Slayt 65: Full Adder
	Slayt 66: 4-bit Adder
	Slayt 67: Other Circuits
	Slayt 68: Vivado Design Tool
	Slayt 69: Verilog – Combinational Circuits
	Slayt 70: Verilog – Combinational Circuits
	Slayt 71: Chip Design Training
	Slayt 72: Chip Design Training
	Slayt 73: Chip Design Training
	Slayt 74: Chip Design Training
	Slayt 75: Chip Design Training
	Slayt 76: Chip Design Training
	Slayt 77: Chip Design Training
	Slayt 78: Chip Design Training
	Slayt 79: Chip Design Training
	Slayt 80: Chip Design Training
	Slayt 81: Chip Design Training
	Slayt 82: Chip Design Training
	Slayt 83: Chip Design Training
	Slayt 84: Chip Design Training
	Slayt 85: Chip Design Training
	Slayt 86: Chip Design Training
	Slayt 87: Chip Design Training
	Slayt 88: Chip Design Training
	Slayt 89: Verilog – Combinational Circuits
	Slayt 90: Verilog – Combinational Circuits
	Slayt 91: Verilog – Combinational Circuits
	Slayt 92: Verilog – Combinational Circuits
	Slayt 93: Verilog – Combinational Circuits
	Slayt 94: Verilog – Combinational Circuits
	Slayt 95: Verilog – Combinational Circuits
	Slayt 96: Verilog – Combinational Circuits
	Slayt 97: Verilog – Combinational Circuits
	Slayt 98: Verilog – Combinational Circuits
	Slayt 99: Verilog – Combinational Circuits
	Slayt 100: Verilog – Combinational Circuits
	Slayt 101: Verilog – Combinational Circuits
	Slayt 102: Verilog – Combinational Circuits
	Slayt 103: Verilog – Combinational Circuits
	Slayt 104: Verilog – Combinational Circuits
	Slayt 105: Verilog – Combinational Circuits
	Slayt 106: Verilog – Combinational Circuits
	Slayt 107: Verilog – Combinational Circuits
	Slayt 108: Verilog – Combinational Circuits
	Slayt 109: Verilog – Combinational Circuits
	Slayt 110: Verilog – Combinational Circuits
	Slayt 111: Verilog – Combinational Circuits
	Slayt 112: Verilog – Combinational Circuits
	Slayt 113: Verilog – Combinational Circuits
	Slayt 114: Verilog – Combinational Circuits
	Slayt 115: Verilog – Combinational Circuits
	Slayt 116: Verilog – Combinational Circuits
	Slayt 117: Verilog – Combinational Circuits
	Slayt 118: Verilog – Combinational Circuits
	Slayt 119: Verilog – Combinational Circuits
	Slayt 120: Verilog – Combinational Circuits
	Slayt 121: Verilog – Combinational Circuits
	Slayt 122: Verilog – Combinational Circuits
	Slayt 123: Verilog – Combinational Circuits
	Slayt 124: Verilog – Combinational Circuits

