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• Computer Hardware

• Softwares that require performance can 
be only written by who have a deep 
understanding of hardware.

• Almost all electronic devices are digital

• Audio recorders , cameras , vehicles 
ph1s , medical devices…

• Developing equipment needed in 
almost every industry

• It is an area that is highly needed both in 
our country and abroad. It could be a 
different career goal for you.

Why Digital Systems?
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What Does Digital Mean?

• Analog Signal
• It has infinite possible value.

• For example, the vibration 
created by a microph1 on the 
line.
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• Digital Signal
– Finite possible values

• For example : Pressing a 
button on a keypad

0
1
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3
4

Likely Values
1.00, 1.01, 20000009,
... endless possibilities

Possible values :
0, 1, 2, 3, or 4.

There are no other possible values
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Digital Signals with Only Two Values: Binary

• Binary digital signals have only two 
possible values

• These are shown as 0 and 1

• A binary digit is expressed as a "bit".

• Within the scope of the course, binary 
digital systems will be considered.

• Binary is popular because:
• Transistors , the most basic digital 

electrical comp1nt , operate at two 
voltage values (0 and 1)
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Advantages of Digitization

• Analogue signal is very 
sensitive to noise

• During transmission, voltage 
levels may change due to 
many factors.

• Digital signals are more 
resistant to degradation during 
transmission. 

• Voltage levels still may not 
transmit perfectly

• However, some distorted 1s 
and 0s can be recovered.
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Digitized Content, Compression Benefits

• Digitized Audios can be 
compressed

• eg . MP3

• Compression can also be d1 
on photos (jpeg) or videos 
(mpeg)

• Digitization has many 
different advantages.

0000000000 0000000000 0000001111 11111111111

00 00 10000001111 01

Example Compression Table
00 --> 0000000000
01 --> 11111111111

1X --> X
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Binary Data Encode

• If button is not pressed (0), if 
pressed (1)

• Multi-button : coding 
1st button =001, 2nd button 
=010, ...

• Some inputs are analog
• Requires an analog-to-digital 

converter to switch to digital.

• ADC (Analog to Digital Converter): 
Converts analog signal to digital

• DAC (Digital to Analog Converter): 
Converts digital signal to analog
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ASCII Encoding
• ASCII: 8 bits of each character 

and symbol. It is a table with 
the corresponding

1010010

1010011

1010100

1001100

1001110

1000101

0110000

0101110

0001001
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Symbol Mostcoding

1110010

1110011

1110100

1101100

1101110

1100101

0111001

0100001

0100000
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Symbol Mostcoding

1010010 1000101 1010011 1010100

REST
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Numbers Encoding

• Decimal base ( decimal )
• There are 10 symbols : 0, 1, 2, ..., 8, and 9

• After 9 comes a new digit
• So each digit is a power of 10.

• Base of 10 is used as it is suitable for daily life 
operations.

• Binary Base ( binary )
• There are two symbols : 0 and 1

• New power comes after 1
• So each digit is a power of 2.

24 23 22

1 0 1

21 20

102

5 2 3

101 100

24 23 22 21 2029 28 27 26 25

16 8 4 2 1512 256 128 64 32
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Boolean Algebra

• Logic Gates are built with 
x
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NOT/OR/AND Logic Gates Time Diagram
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Boolean Algebra Example

• a=1, b=1, c=1, d=0

F = ( a AND b) OR (c AND d) 

Answer : F = (1 AND 1) OR (1 AND 0) 
= 1 OR 0 = 1.

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1
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0
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NOT
1
0
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Boolean Algebra Example

• boolean equation 

given below F = a AND NOT( b OR NOT(c))

a
b

c

F
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Truth Tables

• F indicates output.

• 2- Input : 4 lines

• 3- Input : 8 lines

• 4- Input : 16 lines
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How is Data Stored on a Computer?

• The computer is an electronic circuit.
• It basically works by controlling the flow of electrons.
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How is Data Stored on a Computer?

• Electrons are controlled by " Transistors " .
• It basically works by controlling the flow of electrons.
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How is Data Stored on a Computer?

• Data has two states :
1. the voltage ( Voltage ) exists – This state is called "1".

2. The state where the voltage disappears - This state is called "0".
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How is Data Stored on a Computer?

• It is also possible to make a computer that works according to 
more than two voltage states.

• But the control circuit of this computer will be much more complex.

• For this reason, today's modern computers work with the concept of bit, 
which is the smallest unit, while expressing information.

• It is the smallest data storage unit that can hold 0 or 1 on a bit.



Embedded SystemsDr. V. E. Levent

The computers works with binary system.

• Larger storage areas are obtained by combining multiple bits.
• two bits , 4 different numbers can be expressed.

Binary system :

• It has two states : 0 and 1
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The computers works with binary system.

• Two bits , 4 different numbers can be expressed.

• 00 = 0 (in decimal)

• 01 = 1

• 10 = 2

• 11 = 3
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The computers works with binary system.

• 3 bits 8 numbers can be expressed by combining them :

• 000 = 0

• 001 = 1

• 010 = 2

• 011 = 3

• 100 = 4

• 101 = 5

• 110 = 6

• 111 = 7
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The computers works with binary system.

• In summary;

• 2 n with n bits different numbers can be expressed.

• 2 = 4 different numbers for 2 bits

• 2 3 = 8 different numbers for 3 bits

• 2 4 = 16 different numbers for 4 bits

…

can be expressed.
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What types of data are expressed / stored in the computer?

• Numbers – signed ( unsigned ) , integers , decimal numbers ( floating _ _ _ _ 
point ), complex numbers ( complex ) , rational , irrational , …

• Texts – Characters ( characters ) , texts ( string ) , …
• Images – pixels , images , …
• Sound 
• Logic ( logic ) – true ( true ) , false ( false )
• Operations ( Instructions )
• …

• Let's start with the numbers ...
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Unsigned ( Unsigned ) Integers ( Integers )

• Unsigned integers
• They always store positive values

• Ex :

329 (in base 10)

10 2 10 1 10 0

101 (in base 2)

2 2 2 1 2 0

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5
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Unsigned Integers

• An n - bit unsigned integer 2 n has a value : 
from 0 to 2 n -1 .

2 2 2 1 2 0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7
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Unsigned Binary Base Arithmetic

• Binary base addition (like base 10)
• It is collected starting from the rightmost, and if it is available, 

it is transferred to the next total.

10010 10010 1111

+ 1001 +1011 + 1

11011 11101 10000
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Signed Integers ( Integrs )

• With n bits , we can store 2 n different values .

• 2 n different value;

• Signed integers are obtained by assigning half to positive numbers and 
half to negative numbers.

• Positive numbers 1 to 2 n-1 

Negative numbers -( 2 n-1 ) to -1

• For example , if we have a 3-bit storage;

• Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.
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Signed Integers ( Integrs )

• For example , if we have a 3-bit storage;

• Positive numbers are from 1 to 4 and negative numbers are from -4 to -1.

• If the number 0 is also used, a number from either positive or negative 
part is expressed as 0.
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Signed Integers ( Integrs )

• Positive integers
• They are like unsigned integers. 

00101 = 5

• Negative integers
• Sign Bit Representation – Always sign bit is first bit, 

Other bits are written as in unsigned representation. 
10101 = -5

• 1 's complement – Each bit is inverted 
. 11010 = -5

• In both representations, the largest bit represents the sign of the number : 
0= positive , 1= negative
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Two’s complement
• Sign bit notation and 1 's complement problems

• The number 0 has two representations (+0 and –0 )

• Sign Bit 
0 0 0 0 0 = +0 
1 0 0 0 0 = - 0

• 1 's complement 

00000 = +0 
11111 = -0
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Two’s complement
• Sign bit notation and 1 's complement problems

• The necessary hardware circuits of arithmetic operations are very 
complex.

• Problem with sign bit denoted addition

• For the solution, before adding, it is necessary to check which one is larger, 
subtract the smaller from the larger, and place the sign of the larger number.

• Therefore, it is necessary to have a circuit, subtractor and sign bit setter in the 
necessary hardware to perform the necessary addition process. That is, the 
hardware becomes complex and large.

1 0 1 1 ( -3 )

+ 0 0 1 0 ( 2 )

  1 1 0 1 ( -5 ) → Wrong
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Two’s Complement

• If the value to be expressed is 0 or positive ,
• They are written as unsigned integers, with the largest bits filled with 0.

• If the number is negative ,
• written as a positive number

• Each bit is inverted (1's complement )

• 1 is added to the result.

00101 (5)   01001 (9)

  11010 (1 's complement )         1 0110 ( 1's complement )

+ 1 +    1 

11011 (-5) 10111 (-9)
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Two’s Complement

• Shortcut to find Two’s complement :
• Copy bits of the number from right to left until you see the first "1"

• Reverse remaining bits

 011010000   011010000

  100101111 (1’s Complement) 

 + 1   

  100110000   100110000

(Copy)
(Translate)



Embedded SystemsDr. V. E. Levent

Two’s complement

• Biggest bit sign bit and weight –2 n-1 is .

• -2 n-1 with n bits It can be expressed from 2 n-1 to 1 .
• The smallest negative number ( -2 n-1 ) has no positive counterpart .

-23 22 21 20

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

-23 22 21 20

1 0 0 0 -8

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1
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Convert binary complement to base 10

1. If the largest bit (leftmost) is 1, take the twos 
complement of the number and find its positive 
value.

2. Add the values by multiplying by powers of 2, 
starting with the rightmost bit.

3. If the number is negative when starting the process 
(i.e. its leftmost bit is 1), put a - sign on the base 10 
number that appears.

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024
X = 01101000 binary

= 2 6 +2 5 +2 3 = 64+32+8

= 104 tens
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Convert binary complement to base 10

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

X = 00100111 binary

= 2 5 +2 2 +2 1 +2 0 = 32+4+2+1

= 39 tens

X = 11100110 binary 

-X = 00011010

= 2 4 +2 3 +2 1 = 16+8+2

= 26 tens

X = -26 tens
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Decimal to Binary Complement Conversion

• Method 1 : Division
1. Get the absolute value of the decimal number . ( It should always be positive .)

2. Divide by two – remainder is the smallest bit .

3. Keep dividing until you find 0, and write the remainder of the divisions from right to left.

4. Add zeros to the most right for completing width of the number. (in the example below the 
number is assumed to be 8 bits) 
If the decimal number is negative, take the binary complement of the resulting number.

X = 104tens 104/2 = 52 k0 bit 0

    52/2 = 26 k0 bit 1

    26/2 = 13 k0 bit 2

    13/2 = 6 k1 bit 3

    6/2 = 3 k0 bit 4

    3/2 = 1 k1 bit 5

 X = 01101000binary 1/2 = 0 k1 bit 6
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Decimal to Binary Complement Conversion

• Second Method : Subtracting powers of 2

1. Get the absolute value of the decimal number.

2. Subtract the number less than or equal to the 
number from the powers of 2.

3. Place 1 in the relevant place .

4. Keep going until you get 0 .

5. Add zeros to the most right  for completing width 
of the number. If the decimal number is negative, 
take the binary complement of the resulting binary 
number

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024
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Decimal to Binary Complement Conversion

n 2 n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

X = 104tens 104 - 64 = 40 bit 6

    40 - 32 = 8 bit 5

    8 - 8 = 0 bit 3

 X = 01101000binary 
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Addition

• Binary complement numbers is similar to the addition of unsigned 
numbers. No control mechanism is required.

• The hand bit to be obtained from the largest bit is discarded.

 01101000 (104)  

 + 11110000 (-16) 

  01011000 (88) 
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Subtraction

• Find the negative form of the second number and add .
• Binary complement of the second number and add it with the first 

number

 01101000 (104) 

 - 00010000 (16) 

  01101000 (104) 

 + 11110000 (-16) 

  01011000 (88)  
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Sign Extension

• When adding two numbers, both numbers must have the same bit width.

• If we just add 0 to the left of the two numbers to make them the same bit 
width;

• For correct calculation, the sign bit of the number is placed where it will be 
expanded.

4-bit 8-bit
0100 (4) 00000100 ( currently 4)

1100 (-4) 00001100 ( 12, not -4 )

4-bit 8-bit
0100 (4) 00000100 ( currently 4)

1100 (-4) 11111100 ( currently -4)
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Overflow

• When numbers are very large , the sum may turn out to 
be too large to be expressed in n-bit numbers .

• Overflow status :

• It can happen in addition operations where both numbers 
have the same sign .

 01000 (8)  11000 (-8)

 + 01001 (9) + 10111 (-9)

  10001 (-15)  01111 (+15)
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Logic Operations 

• Are calculated as 
• There are two cases, True =1, False =0

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

A Not A

0 1

1 0
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Logic Operation Examples

• And
• With 0 = result is 0

• With 1 = result no change

• Or
• With 0 or operation = no change

• With 1 or operation = 1

• Not
• It changes every bit.

 11000101 

 and 00001111 

  00000101 

 11000101 

 or 00001111 

  11001111 

not 11000101 

  00111010 
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Hexadecimal Notation 

• It is a 16 bit format that is frequently used on computers.
• Each 4 bits of a binary number represents a hexadecimal representation.

• It provides fewer mistakes than using long 0's and 1's.

Bin Hex Dec

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

Bin Hex Dec

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15
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Converting from Binary to Hexadecimal

• Each 4 bits equals 1 
• They are grouped starting from the right.

011101010001111010011010111

7D4F8A3
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Decimal Numbers : Fixed -Point Representation

• Decimals expression
• A point is chosing for seperating integer and fraction parts

• Addition and subtration operations are calculating as twos complement
operations

 00101000.101 (40.625)

 + 11111110.110 (-1.25)

  00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125
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Texts : ASCII Characters

• The ASCII table is an 8-bit table. Each number between 0-255 has a 
corresponding character or control signal.

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 ( 38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29 ) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [ 6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d ] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del
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Other Data Types

• Texts
• Formed by sequential writing of characters

• Image
• They are formed by the combination of pixels.

• Black and White : 1 bit (1/0 = black / white )

• Color : Red, Blue, Green (RGB) comp1nts are available. Each is stored 
as 8-bit numbers.

• Sound
• It is usually represented as a sequential recording of fixed-

point notation numbers.
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Design of Processor Blocks with 

• Number of Transistors in Processors

• Intel 4004 (1971): 2250

• Intel 8088 (1979): 29k

• AMD K6 (1997): 7.5 million

• Intel Pentium 4 (2006): 184 Million

• Intel I7 Haswell -E (2014): 2.6 Billion

• AMD Epyc Rome (2019): 32 Billion
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Decoder and MUX 

• Decoder : Activates the pin corresponding to the 
number received in the input.

• 2 -input decoder: There are 4 possible inputs.
• It has 4 outputs

• Enable with pin decoder
• If e=0 , all outputs are 0

• If e=1 , it behaves normally

• N input decoder: 2 n exit

i0

i1

d0

d1

d2

d3 1

1

1

0

0

0

i0

i1

d0

d1

d2

d3 0

0

0

0

0

1

i0

i1

d0

d1

d2

d3

i0

i1

d0

d1

d2

d30

0

1

0

1

0

0

1

0

1

0

0

i0

d0

d1

d2

d3

i1

i0

i1

d0

d1

d2

d3e 1

1

1

1

0

0

0

e

i0

i1

d0

d1

d2

d3 0

1

1

0

0

0

0

i1’i0’

i1’i0

i1i0’

i1i0
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Multiplex e r (Mux)

• Mux: It is a combinational circuit. Outputs incoming 
inputs according to the select bit.

• 4 input mux → 2 select inputs

• 8 input mux → 3 select input 

• N inputs → log 2 (N) select input
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Mux Internal Structure

s0

d

i0

i1

2×1

i1

i0

s0

1

d

2×1

i1

i0

s0

0

d

2×1

i1
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0

1

0

2x1 mux

i0

4 1

i2

i1

i3

s1 s0

d

s0

d

i0

i1

i2

i3

s1

4x1 mux

0
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MUX Merge

• Example : Two 4-bit inputs , A (a3 a2 a1 a0) and B (b3 b2 b1 b0)
• 4-bit 2x1 MUX can be done using 4 1 bit, 2x1 MUX

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

i0

s0
i1

2 1
d

a3
b3

I0

s0

s0

I1

4-bit
2x1

D C

A

B

a2
b2

a1
b1

a0
b0

s0

4

C
4

4

4

c3

c2

c1

c0

=
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N-bit MUX Example

• There are 4 possible texts to display
• Temperature , Average Fuel Usage , Average Speed , KM Remaining - all 
• Which one will appear on the screen is selected with the x and y bits.
• 8-bit 4x1 MUX can be used.
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Gate Delays

• All circuits have a delay.
• Outputs don't change instantly
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From Logic Gates to Control Units

• Combinational Circuits
• The output of the circuit depends on the current input.

• The output delay of the circuit depends on the longest path in the 
circuit.
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From Logic Gates to Control Units

• Sequential Circuits
• The output depends on both the current input and the values 

in memory.

• Some outputs of the circuit are stored in memory and reused.

• We'll get into the details next week.
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Multiplexer - MUX

• n - bit select, 2 n input and It has only one output.
• According to the select bit, the value from the input is transferred to the 

output.

4-1 MUX
2 -1 MUX
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Selector (Multiplexer - MUX)

• n - bit select, 2 n input and It has only one output.
• According to the select bit, the value from the input is transferred to the 

output.

2 -1 MUX
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Full Adder

• Taking two bits (A and B) and a carry input (Cin), it produces a one-bit 
sum (S) and carry ( Cout ) .

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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4-bit Adder
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Other Circuits

• Any circuit can be expressed with And, Or and Not gates.

1. In the truth table, do and operation

for 1 outputting rows 

2. Combine these and gates with or gate

A B C D

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0
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Vivado Design Tool

• Design Flow

RTL 
Design

Synthesis

Various 
IPs

Design

Verification

Implementation
FPGA 

Configuration

Behavioral 
Validation

Timing 
Verification

In-Chip 
Debugging

Algorithm
Hardware 

Architecture
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Verilog – Combinational Circuits

What is FPGA?
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Verilog – Combinational Circuits

What is FPGA?
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Chip Design Training

What is FPGA?

• FPGA ( Field programmable Gate Arrays ) is an integrated chip.

• It contains programmable blocks and configurable connections between these 
blocks.

• By programming these blocks and connections, the desired circuit can be 
implemented in the FPGA .

Example FPGA Chip
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Chip Design Training

What is FPGA?

• Some FPGAs can only be programmed once.

• It is called one-time programmable (OTP).



Digital DesignDr. V. E. Levent

Chip Design Training

What is FPGA?

• "Field Programmable" means that it can be programmed in the required application with unlimited
count.

• This means that after the FPGA chips are produced in the factory, they can be used in the desired 
design later on.
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Chip Design Training

Why is FPGA important?

Wide variety of integrated circuits (IC – Integrated circuits ) are available.

• Memory

• Microprocessors

• Programmable logic devices ( Programmable logic devices )
• SPLD (Simple)

• CPLD ( Complex )

• ASIC – Application specific integrated circut

• And FPGAs ...
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Chip Design Training

ASICs

• They are useful in the implementation of huge and complex circuits.

• ASICs are integrated circuits built to perform a specific operation.

• ASICs provide very high performance (operation at high frequencies) , ASIC design complexity and 
design time and costs are quite high.

• And the produced chips cannot be modified . In case of a fault with the chip, all produced chips will be 
thrown away.
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Chip Design Training

FPGAs

• FPGAs It is programmable. 

• Unlike ASICs ; In the case of an error in the design, the design can be repeatedly modified and tested.
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Chip Design Training

FPGAs

• FPGAs They are much cheaper than ASICs . ( ASICs are only cheap when millions of units are produced)

• FPGAs is much easier than creating an ASIC design.

• Due to the shorter design time, once a product is produced, the time to market is shorter.

• NRE (Non-recurring engineering) is high when developing a ASIC Design
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Chip Design Training

FPGA is mainly used

• Telecommunication

• Networking

• Automotive

• Medical

• Various industrial applications

• Prototypes of ASIC designs

• DSP ( Digital signal processor ) applications

• SoC ( System on Chip ), a single IC where all necessary electronics are gathered together



Digital DesignDr. V. E. Levent

Chip Design Training

Reasons for FPGA Use

• Computing Power

• Controlling with nanosecond order
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Chip Design Training

Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];

c[3]<=a[3]+b[3];

...

c[1000]<=a[1000]+b[1000];
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Chip Design Training

Reasons for FPGA Use
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Chip Design Training

Reasons for FPGA Use
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Chip Design Training

Reasons for FPGA Use
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Chip Design Training

Reasons for FPGA Use
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Chip Design Training

Reasons for FPGA Use
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Reasons for FPGA Use

c[0]=a[0]+b[0];

c[1]=a[1]+b[1];

c[2]=a[2]+b[2];

c[3]=a[3]+b[3];

...

c[1000]=a[1000]+b[1000];

Processors FPGA

c[0]<=a[0]+b[0];

c[1]<=a[1]+b[1];

c[2]<=a[2]+b[2];
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Chip Design Training

Reasons for FPGA Use

Processors FPGA
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Chip Design Training

Reasons for FPGA Use

For 1000 transactions (assume each operation takes 1 

cycle),

Average Processor frequency: 3 GHz,

Required Time = Number of operations X (1/Frequency)

= 1000 X 1/3 billion

= 333 nanoseconds

CPU FPGA
For 1000 transactions (assume each operation

takes 1 cycle),

Average FPGA frequency: 100mhz

Time required = 1 x (1/Frequency)

= 1 X 1/100m

= 10 nanoseconds
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Verilog – Combinational Circuits

In LABs Xilinx Basys3 FPGAs with Artix 7 FPGAs will be used.
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Verilog – Combinational Circuits

Vivado IDE will be used to programming Xilinx Based FPGAs
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Verilog – Combinational Circuits

Vivado Design Tool

• Download Address: https://www.xilinx.com/support/download.html

• Installation and Licensing Video : https://www.youtube.com/watch?v=yW7t28XaVEs

https://www.xilinx.com/support/download.html
https://www.youtube.com/watch?v=yW7t28XaVEs
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool

is the FPGA we will use in LABs

XC7A35Tcpg236-1

The model must be selected.
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a new design resource
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Verilog – Combinational Circuits

Vivado Design Tool



Digital DesignDr. V. E. Levent

Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool
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Verilog – Combinational Circuits

Vivado Design Tool

RTL Design

File To Do
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint
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Verilog – Combinational Circuits

Vivado Design Tool

Adding a constraint

Write constraints
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Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation
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Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation
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Verilog – Combinational Circuits

Vivado Design Tool

Bitstream generation
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Verilog – Combinational Circuits

Most commonly using HDL (Hardware Description Language) 
Languages

• Verilog

• System Verilog

• VHDL
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Verilog – Combinational Circuits
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Verilog – Combinational Circuits
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Verilog – Combinational Circuits

Vivado ,

• Verilog

• system Verilog

• VHDL

It supports languages. Within the scope of the course, designs will 
be made with Verilog language.
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Verilog – Combinational Circuits

myModule
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Verilog – Combinational Circuits

myModule

Verilog Design

module myModule(input a, input b, input c, 
output reg y);

endmodule
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Verilog – Combinational Circuits

myModule

Verilog Design

module myModule(input a, input b, input c, output reg y);

reg tmp;
always@(*) begin

tmp = a & b;
y = tmp | c;

end

endmodule
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Verilog – Combinational Circuits

FPGA
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Verilog – Combinational Circuits
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Verilog – Combinational Circuits
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Verilog – Combinational Circuits

Constraint (XDC) File

http://levent.tc/files/courses/digital_design/labs/basys3.xdc

http://levent.tc/files/courses/digital_design/labs/basys3.xdc
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